Seasonal variation in size spectra of phytoplankton assemblages in Loch Leven, Scotland

  • A. E. Bailey-Watts
Part of the Developments in Hydrobiology book series (DIHY, volume 33)


Greatest axial dimensions (GALD) of phytoplankton cells, colonies and filaments etc, are used to describe the size structure of whole assemblages of species in the shallow eutrophic Loch Leven (S.E. Scotland). Two-weekly samples over the period 1979–1982 have been analysed to determine whether variation in size spectra show seasonal trends. Size frequency distributions are displayed using — for the first time in studies of phytoplankton assemblages — the graphical method based on rankits. The paper describes how individuals to be measured were chosen without bias towards any particular type. Seasonal variation in temperature and nutrient concentrations are discussed in relation to algal size structure.

In spite of irregular shifts in species composition and abundance, phytoplankton assemblage size spectra (PASS) exhibit seasonal patterns. Early in the year, when temperatures are low and herbivorous zooplankton sparse, small algae (≤ 15 μm) predominate. The winter-early spring assemblages often exhibit a normal size frequency distribution. Later in the year larger algae occasionally become relatively more numerous, and skewed or polymodal frequency distributions are recorded. Increases in large algae are usually associated with Daphnia population maxima; the inter-relationship is clearly demonstrated in time-series plots of GALD isopleths and Daphnia numbers.

The potential of the PASS method to further knowledge on ecological controls of phytoplankton is discussed. The investigator is compelled to include all species in a sample. The rankit-dimension graphs retain all the data, so the position of each algal measurement and its influence on the size distribution can be observed. This approach may help to identify size ranges of algae removed by a wide variety of grazing zooplankton.


Soluble Reactive Phosphorus Size Frequency Distribution Centric Diatom Phytoplankton Size Algal Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey-Watts, A. E., 1973. Observations on the phytoplankton of Loch Leven, Kinross, Scotland. Ph.D. Thesis, Univ. Lond., 337 pages.Google Scholar
  2. Bailey-Watts, A. E., 1974. The algal plankton of Loch Leven, Kinross. Proc. r. Soc. Edinb. B 74: 135–156.Google Scholar
  3. Bailey-Watts, A. E., 1976. Planktonic diatoms and some diatom-silica relations in a shallow eutrophic Scottish loch. Freshwat. Biol. 6: 69–80.CrossRefGoogle Scholar
  4. Bailey-Watts, A. E., 1978. A nine-year study of the phytoplankton of the eutrophic and non-stratifying Loch Leven (Kinross, Scotland). J. Ecol. 66: 741–771.CrossRefGoogle Scholar
  5. Bailey-Watts, A. E., 1979. Aspects of plankton ecology. In: Institute of Terrestrial Ecology, Annual Rep. 1978, N.E.R.C.: 79–80.Google Scholar
  6. Bailey-Watts, A. E., 1982. The composition and abundance of phytoplankton in Loch Leven (Scotland) 1977–1979 and a comparison with the succession in earlier years. Int. Revue ges. Hydrobiol. Hydrogr. 67: 1–25.Google Scholar
  7. Bailey-Watts, A. E., M. E. Bindloss & J. H. Belcher, 1968. Freshwater primary production by a blue-green alga of bacterial size. Nature, Lond. 220: 1344–1345.PubMedCrossRefGoogle Scholar
  8. Bailey-Watts, A. E. & A. Kirika, 1981. The assessment of size variation in Loch Leven phytoplankton: a methodology and some of its uses in the study of factors influencing size. J. Plankton Res. 3: 261–282.CrossRefGoogle Scholar
  9. Bailey-Watts, A. E. & J. W. G. Lund, 1973. Observations on a diatom bloom in Loch Leven, Scotland. Biol. J. linn. Soc. 5: 235–253.CrossRefGoogle Scholar
  10. Benham, D. G. & D. G. George, 1981. A portable system for measuring water temperature, conductivity, dissolved oxygen, light attenuation and depth of sampling. Freshwat. Biol. 11: 459–471.CrossRefGoogle Scholar
  11. Burgi, H. R., H. Buehrer, J. K. Bloesch & E. Szabo, 1979. The influence of experimentally varied zooplankton density on production and sedimentation in a highly eutrophic lake. Schweiz. Z. Hydrol. 41: 38–63.CrossRefGoogle Scholar
  12. Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnol. Oceanogr. 14: 693–700.CrossRefGoogle Scholar
  13. Cassie, R. M., 1954. Some uses of probability paper in the analysis of size frequency distributions. Aust. J. mar. freshwat. Res. 5: 513–522.Google Scholar
  14. Coveney, M. F., G. Cronberg, M. Enell, K. Larsson & L. Oiofsson, 1977. Phytoplankton, zooplankton and bacteria - standing crop and production relationships in a eutrophic lake. Oikos 29: 5–21.CrossRefGoogle Scholar
  15. Downes, M. T., 1978. An improved hydrazine reduction method for the automated determination of low nitrate levels in freshwater. Wat. Res. 12: 673–675.CrossRefGoogle Scholar
  16. Evans, J. H. & S. M. McGill, 1970. An investigation of the Coulter Counter in biomass determintions of natural fresh-water phytoplankton populations. Hydrobiologia 35: 401–419.CrossRefGoogle Scholar
  17. Fisher, R. A. & F. Yates, 1963. Statistical tables for biological, agricultural and medical research, 3rd Edn. Oliver & Boyd, Lond., 112 pp.Google Scholar
  18. Fryer, G., 1957. The food of some freshwater cyclopoids and its ecological significance. J. anim. Ecol. 26: 263–286.CrossRefGoogle Scholar
  19. Geller, W., 1975. Die Nahrungsaufnahme von Daphnia pulex in Abhangigkeit von der Futterkonzentration, der Temperatur, der Korpergrosse und dem Hungerzustand der Tiere. Arch. Hydrobiol. (Suppl.) 48: 47–107.Google Scholar
  20. George, D. G. & G. H. Owen, 1978. A new tube sampler for crustacean zooplankton. Limnol. Oceanogr. 23: 563–566.CrossRefGoogle Scholar
  21. Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol. 88: 155–177.Google Scholar
  22. Haffner, G. D. & J. H. Evans, 1974. Determination of seston size distribution with Coulter counter models A and B and the two tube technique. Br. phycol. J. 9: 255–260.CrossRefGoogle Scholar
  23. Harbiston, G. R. & V. L. McAlister, 1980. Fact and artifact in copepod feeding experiments. Limnol. Oceanogr. 25: 971–981.CrossRefGoogle Scholar
  24. Harding, J. P., 1949. The use of probability paper for the graphical analysis of polymodal frequency distributions. J. mar. Biol. Ass. U.K. 28: 141–153.CrossRefGoogle Scholar
  25. Hillbricht-Ilkowska, A., I. Spodniewska & T. Weglenska, 1979. Changes in the phytoplankton-zooplankton relationship connected with the eutrophication of lakes. In J. Salanki & P. Biro (eds), Human impacts on life in fresh waters. Akad. Kiado, Budapest: 59–75.Google Scholar
  26. Holden, A. V., 1976. The relative importance of agricultural fertilisers as a source of nitrogen and phosphorus to Loch Leven. Tech. Bull. Minist. Agric. Fish. Fd., 32: 306–314.Google Scholar
  27. Holden, A. V. & L. A. Caines, 1974. Nutrient chemistry of Loch Leven, Kinross. Proc. r. Soc. Edinb. B 74: 101–121.Google Scholar
  28. Ilmavirta, V., 1974. Electronic particle counting applied in phytoplankton studies in three southern Finnish lakes. Ann. bot. fenn. 11: 105–111.Google Scholar
  29. Johnson, D. & A. F. Walker, 1974. The zooplankton of Loch Leven, Kinross. Proc. r. Soc. Edinb. B 74: 285–294.Google Scholar
  30. Johnston, D. W., A. J. Holding & J. E. McCluskie, 1974. Preliminary comparative studies on denitrification and methane production in Loch Leven, Kinross, and other freshwater lakes. Proc. r. Soc. Edinb. B 74: 123–133.Google Scholar
  31. Komarek, J. & H. Ettl. 1958. Algologische Studien. Verlag Tschechoslow. Akad. Wiss., Prague, 358 pp.Google Scholar
  32. Lampert, W., 1978. Climatic conditions and planktonic interactions as factors controlling regular succession of spring algal bloom and extremely clear water in Lake Constance. Verh. int. Ver. Limnol. 20: 969–974.Google Scholar
  33. Lampert, W., 1981. Inhibitory and toxic effects of blue-green algae on Daphnia. Int. Revue ges. Hydrobiol. Hydrogr. 66: 285–298.CrossRefGoogle Scholar
  34. Lampert, W. & U. Schoeber, 1978. Das regelmassige Auftreten von Fruhjahrs-Algenmaximum and ‘Klarwasserstadium’ im Bodensee als Folge von klimatischen Bedingungen und Wechselwirkungen zwischen Phyto- und Zooplankton. Arch. Hydrobiol. 82: 364–386.Google Scholar
  35. Lewis, W. M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science, N.Y. 192: 885–887.CrossRefGoogle Scholar
  36. Lewis, W. M. & W. Riehl, 1982. Phytoplankton composition and morphology in Lake Valencia, Venezuela. Int. Revue ges. Hydrobiol. Hydrogr. 67: 297–322.Google Scholar
  37. Lund, J. W. G., 1949. Studies on AsterionellaI. The origin and nature of the cells producing seasonal maxima. J. Ecol. 37: 389–419.CrossRefGoogle Scholar
  38. Lund, J. W. G., 1961. The periodicity of μ-algae in three English lakes. Verh. int. Ver. Limnol. 14: 147–154.Google Scholar
  39. Malone, T. C., 1980. Algal size. In: I. Morris (ed.), The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford: 433–463.Google Scholar
  40. May, L., 1980. The ecology of planktonic rotifers in Loch Leven. Ph. D. Thesis, Council for National Academic Awards, U.K., 158 pages.Google Scholar
  41. May, L., 1983. Rotifer occurrence in relation to water temperature in Loch Leven, Scotland. Hydrobiologia 104: 311–315.CrossRefGoogle Scholar
  42. McNaught, D. C., M. Buzzard, D. Griesmer & M. Kennedy, 1980. Zooplankton grazing and population dynamics relative to water quality in Southern Lake Huron. Ecol. Res. U.S.E.P.A., 129 pp.Google Scholar
  43. Mullin, J. B. & J. P. Riley, 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Anal. Chim. Acta 12: 162–176.CrossRefGoogle Scholar
  44. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.CrossRefGoogle Scholar
  45. Munawar, M. & I. F. Munawar, 1975. The abundance and significance of phytoflagellates and nano-plankton in the St Lawrence Great Lakes. Verh. int. Ver. Limnol. 19: 705–723.Google Scholar
  46. Munawar, M. & I. F. Munawar, 1981. A general comparison of the taxonomic composition and size analyses of the phytoplankton of the North American Great Lakes. Verh. int. Ver. Limnol. 21: 1695–1716.Google Scholar
  47. Munawar, M. & I. F. Munawar, 1982. Phycological studies in Lakes Ontario, Erie, Huron and Superior. Can. J. Bot. 60: 1837–1858.CrossRefGoogle Scholar
  48. Munawar, M. & I. F. Munawar, 1986. Seasonality of phyto-plankton in the North American Great Lakes. (This volume).Google Scholar
  49. Munawar, M., I. F. Munawar, L. R. Culp & G. Dupuis, 1978. Relative importance of nannoplankton in Lake Superior phytoplankton biomass and community metabolism. J. G Lakes Res. 4: 462–480.CrossRefGoogle Scholar
  50. Reynolds, C. S., G. H. M. Jaworksi, H. A. Cmiech & G. F. Leedale, 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. emend. Elenkin. Phil. Trans, r. Soc., Lond: B 293: 419–477.CrossRefGoogle Scholar
  51. Robinson, G. G. C. & D. J. Brown, 1970. Electronic particle sizing as a means of measuring production in a eutrophic lake. Proc. 5th Can. Symp. Wat. Pollut. Res. 5: 1–8.Google Scholar
  52. Ross, P. E. & M. Munawar, 1981. Preference for nanoplankton size fractions in Lake Ontario zooplankton grazing. J. G. Lakes Res. 7: 65–67.CrossRefGoogle Scholar
  53. Round, F. E., 1971. The growth and succession of algal populations in freshwaters. Mitt. int. Ver. Limnol. 19: 70–99.Google Scholar
  54. Rutkowski, E. W., 1980. Studies on feeding of Cyclops abyssorum (Sars) in Loch Leven, Kinross-shire, Scotland. M. Sci. Thesis, Univ. Stirling, pages.Google Scholar
  55. Sicko-Goad, L. & G. F. Stoermer, 1984. The need for uniform terminology concerning phytoplankton cell size fractions and examples of picoplankton from the Laurentian Great Lakes. J. G. Lakes Res. 10: 90–93.CrossRefGoogle Scholar
  56. Smith, I. R., 1974. The structure and physical environment of Loch Leven, Scotland. Proc. r. Soc. Edinb. B 74: 81–100.Google Scholar
  57. Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J. Phycol. 18: 275–284.CrossRefGoogle Scholar
  58. Sokal, R. R. & F. J. Rohlf, 1969. Biometry. The principles and practice of statistics in biological research. W. H. Freeman & Co., S. Francisco, 776 pp.Google Scholar
  59. Tailing, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll a in phytoplankton. Proc. Conf. Primary Prod. Measmts, Mar. & Freshwat., Hawaii 1961. U.S. atom. Energy Commn, Div. tech. Inf. TID-7633: 431–434.Google Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1986

Authors and Affiliations

  • A. E. Bailey-Watts
    • 1
  1. 1.Plankton Ecology Project GroupInstitute of Terrestrial EcologyPenicuikScotland

Personalised recommendations