The Ions

Part of the Atmospheric Sciences Library book series (ATSL, volume 5)


Atmospheric atoms and molecules can be ionized either by short wavelength solar radiation (UV and x-rays), or by precipitating energetic particles:
$${\rm X}+{\rm h}\nu\rightarrow{\rm X}^{+}+{\rm e}$$
$${\rm X}+{\rm e}^{\ast}\rightarrow{\rm X}^{+}+2{\rm e}$$
where e* represents an energetic electron. These processes are the starting points for a series of reactions which determine the structure of the ionosphere. Several types of general reactions of importance in ion chemistry should be outlined in order to study the ionosphere. For example, different ions may be produced from the initial (also called primary) particles through charge exchange reactions with neutral molecules:
$${\rm X}^{+}+{\rm Y}\rightarrow{\rm Y}^{+}+{\rm X}$$
Negative ions can be formed by electron attachment on neutral species:
$${\rm e}+{\rm Z}+{\rm M}\rightarrow{\rm Z}^{-}+{\rm M}$$
Electrons can be released from negative ions, either by photodetachment or by collisional detachment:
$${\rm Z}^{-}+{\rm h}\nu\rightarrow{\rm Z}+{\rm e}$$
$${\rm Z}^{-}+{\rm M}\rightarrow{\rm Z}+{\rm M}+{\rm e}$$
Positively and negatively charged particles can recombine:
$${\rm X}^{+}+{\rm e}\rightarrow{\rm neutral}\ {\rm products}$$
$${\rm X}^{+}+{\rm Y}^{-}\rightarrow{\rm neutral}\ {\rm products}$$
We will examine the detailed chemistry of each of these processes below.


Middle Atmosphere Lower Ionosphere Solar Proton Event Proton Hydrate Ionospheric Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aikin, A.C., R.A. Goldberg, W. Jones and J.A. Kane, Observations of the mid-latitude lower ionosphere in Winter, J. Geophys. Res., 82, 1869, 1977.CrossRefGoogle Scholar
  2. Appleton, E.V., URSI Proc. Washington, 1927.Google Scholar
  3. Appleton, E. and W.R. Piggott, Ionospheric absorption measurements during a sunspot cycle, J. Atm. Terr. Phys., 8, 141, 1954.CrossRefGoogle Scholar
  4. Arijs, E., J. Ingels and D. Nevejans, Mass spectrometric measurement of positive ion composition in the stratosphere, Nature, 271, 642, 1978.CrossRefGoogle Scholar
  5. Arijs, E., D. Nevejans and J. Ingels, Unambiguous mass determination of major stratospheric positive ions, Nature, 288, 684, 1980.CrossRefGoogle Scholar
  6. Arijs, E., D. Nevejans, P. Frederick and J. Ingels, Negative ion composition measurements in the stratosphere, Geophys. Res. Lett., 8, 1, 121–124, 1981.CrossRefGoogle Scholar
  7. Arijs, E., D. Nevejans and J. Ingels, Stratospheric positive ion composition measurements, ion abundances and related trace gas detection, J. Atmos. Terr. Phys., 44, 43, 1982a.CrossRefGoogle Scholar
  8. Arijs, E., D. Nevejans, P. Frederick and J. Ingels, Stratospheric negative ion composition measurements, ion abundances and related trace gas detection, J. Atm. Terr. Phys., 44, 681, 1982b.CrossRefGoogle Scholar
  9. Arijs, E., Positive and negative ions in the stratosphere, Annales Geophysicae, 1, 149, 1983.Google Scholar
  10. Arijs, E., D. Nevejans and J. Ingels, Positive ion composition measurements and acetonitrile in the upper stratosphere, Nature, 303, 314, 1983.CrossRefGoogle Scholar
  11. Arijs, E., D. Nevejans, J. Ingels and P. Frederick, Positive ion composition measurements between 33 and 20km altitude, Annales Geophysicae, 2, 161, 1983.Google Scholar
  12. Arnold, F., J. Kissel, H. Wieder and J. Zhringer, Negative ions in the lower ionosphere: a mass spectrometric measurement, J. Atmos. Terr. Phys., 33, 1669, 1971.Google Scholar
  13. Arnold, F. and D. Krankowsky, Ion composition and electron — and ion — loss processes in the earth’s atmosphere, pp. 93–127, in: Grandal, B. and Holtet, J.A., (eds.), Dynamical and chemical coupling between the neutral and ionized atmosphere, D. Reidel Publishing Company, Dordrecht — Holland, 1977.Google Scholar
  14. Arnold, F., D. Krankowsky and K.H. Marien, First mass spectrometric measurements of positive ions in the stratosphere, Nature, 267, 30, 1977.CrossRefGoogle Scholar
  15. Arnold, F., H. Boehringer and G. Henschen, Composition measurements of stratospheric positive ions, Geophys. Res. Lett., 5, 653, 1978.CrossRefGoogle Scholar
  16. Arnold, F., H. Boehringer and G. Henschen, Composition measurements of stratospheric positive ions, Geophys. Res. Lett., 5, 653, 1978.CrossRefGoogle Scholar
  17. Arnold, F. and G. Henschen, First mass analysis of stratospheric negative ions, Nature, 275, 521, 1978.CrossRefGoogle Scholar
  18. Arnold, F. and D. Krankowsky, Mid-latitude lower ionosphere structure and composition measurements during winter, J. Atmos. Terr. Phys., 41, 1127, 1979.CrossRefGoogle Scholar
  19. Arnold, F., The middle atmosphere ionized component, Proceedings of the ESA-symposium on rocket — and balloon — programmes held at Bournemouth (1980).Google Scholar
  20. Arnold, F., G. Henschen and E.E. Ferguson, Mass spectrometric measurements of fractional ion abundances in the stratosphere. Positive ions, Planet. Space Sci., 29, 185, 1981.CrossRefGoogle Scholar
  21. Banks, P., and G. Kockarts, Aeronomy, (Academic Press, New York), 1973.Google Scholar
  22. Becker, K.H. and A. Ionescu, Acetonitrile in the lower troposphere, Geophys. Res. Lett., 9, 1349, 1982.CrossRefGoogle Scholar
  23. Beran, D. and W. Bangert, Trace constituents in the mesosphere and lower thermosphere during winter anomaly events, J. Atmos. Terr. Phys., 41, 1091, 1979.CrossRefGoogle Scholar
  24. Beynon, W. J. G., E. R. Williams, F. Arnold, D. Krankowsky, W. C. Bain and P. H. G. Dickinson, D-region rocket measurements in winter anomaly conditions, Nature, 261, 118, 1976.CrossRefGoogle Scholar
  25. Bjorn, L. G., and F. Arnold, Mass spectrometric detection of precondensation nuclei at the arctic summer menopause, Geophys. Res. Lett., 8, 1167, 1981.CrossRefGoogle Scholar
  26. Boehringer, H. and F. Arnold, Acetonitrile in the stratosphere, implicatiions from laboratory studies, Nature, 290, 321, 1981.CrossRefGoogle Scholar
  27. Boehringer, H., D. W. Fahey, F. C. Fehsenfeld, and E. E. Ferguson, The role of ion-molecule reactions in the conversion of N2O5 to HNO3 in the stratosphere, Planet. Space Sci., 31, 185, 1983.CrossRefGoogle Scholar
  28. Brasseur, G. and M. Nicolet, Chemospheric processes of nitric oxide in the mesosphere and stratosphere, Planet. Space Sci., 21, 939, 1973.CrossRefGoogle Scholar
  29. Brasseur, G., Physique et chimie de l’atmosphere moyenne, (Masson, Paris), 1982.Google Scholar
  30. Brasseur, G., E. Arijs, A. De Rudder, D. Nevejans and J. Ingels, Acetonitrile in the atmosphere, Geophys. Res. Lett., 10, 725 1983.CrossRefGoogle Scholar
  31. Brasseur, G. and A. Chatel, Modelling of stratospheric ions: a first attempt, Annales Geophysicae, 1, 173, 1983.Google Scholar
  32. Brasseur, G. and P. De Baets, Minor constituents in the mesosphere and lower thermosphere, to be submitted to J. Geophys. Res., 1984.Google Scholar
  33. Budden, K.G., Radio waves in the ionosphere, (Cambridge Univ. Press), 1961.Google Scholar
  34. Crutzen, P. J., I. S. A. Isaksen and G. C. Reid, Solar proton events: stratospheric sources of nitric oxide, Science, 189, 457, 1975.CrossRefGoogle Scholar
  35. Danilov, A.D. and J. Taubenheim, NO and temperature control of the D-region, Space Science Reviews, 34, 413, 1983.CrossRefGoogle Scholar
  36. Davies, K., Ionospheric radio propagation, National Bureau of Standard, Monograph 80, 1965 and Dover Publications, Inc., New York, N.Y., 1966.Google Scholar
  37. Dubach, J. and W.A. Barker, Charged particle induced ionization rates in planetary atmospheres, J. Atmos. Terr. Phys., 33, 1287, 1971.CrossRefGoogle Scholar
  38. Fehsenfeld, F.C. and E.E. Ferguson, Laboratory studies of negative ion reactions with atmospheric trace constituent, J. Chem. Phys., 61, 3181, 1974.CrossRefGoogle Scholar
  39. Fehsenfeld, F.C., C.J. Howard, and A.L. Schmeltekopf, Gas phase ion chemistry of HNO3, J. Chem. Phys., 63, 2835, 1975.CrossRefGoogle Scholar
  40. Fehsenfeld, D., F.C.Dotan, D. Albritton, C. Howard and E. Ferguson, Stratospheric positive ion chemistry of formaldehyde and methanol, J. Geophys. Res., 83, 1333, 1978.CrossRefGoogle Scholar
  41. Fehsenfeld, F.C. and E.E. Ferguson, Thermal energy positive ion reactions in a wet atmosphere containing ammonia, J. Chem. Phys., 59, 6272, 1983.CrossRefGoogle Scholar
  42. Ferguson, E. E., D-region ion chemistry, Rev. Geophys. Space Phys., 9, 997, 1971.CrossRefGoogle Scholar
  43. Ferguson, E., Sodium hydroxide in the stratosphere, Geophys. Res. Lett., 5, 1035, 1978.CrossRefGoogle Scholar
  44. Ferguson, E.E., Ion-molecule reactions in the atmosphere, pp. 377–403, in: Ausloos, P. (ed.) Kinetics of ion — molecule reactions, Plenum Press, (New York), 1979.Google Scholar
  45. Ferguson, E.E., D.W. Fahey, F.C. Fehsenfeld and D.L. Albritton, Silicon ion chemistry in the ionosphere, Planet. Space Sci., 29, 307, 1981a.CrossRefGoogle Scholar
  46. Ferguson, E.E., B.R. Rowe, D.W. Fahey and F.C. Fehsenfeld, Magnesium ion chemistry in the stratosphere, Planet. Space Sci., 29, 479, 1981b.CrossRefGoogle Scholar
  47. Goldberg, R.A. and A.C. Aikin, Comet Encke: Meteor metallic ion identification by mass spectrometer, Science, 180, 294, 1973.CrossRefGoogle Scholar
  48. Hall, L.A. and H.E. Hinteregger, Solar radiation in the extreme ultraviolet and its variation with solar rotation, J. Geophys. Res., 75, 6959, 1970.CrossRefGoogle Scholar
  49. Hartree, D.R., The propagation of electromagnetic waves in a refracting medium in a magnetic field, Proc. Cambridge Phil. Soc., 27, 143, 1931.CrossRefGoogle Scholar
  50. Heaps, M. G., A parameterization of cosmic ray ionization, Planet. Space Sci., 26, 513, 1978a.CrossRefGoogle Scholar
  51. Heaps, M.G., U.S. Army Atmospheric Sci. Lab. Report ASL-TR-0012, 1978b.Google Scholar
  52. Henschen, G. and F. Arnold, Extended positive ion composition measurements in the stratosphere. Implication for neutral trace gases, Geophys. Res. Lett., 8, 999, 1981.CrossRefGoogle Scholar
  53. Hunten, D.M. and M.B. McElroy, Metastable O2(1Δ8) as a major source of ions in the D-region, J. Geophys. Res., 73, 2421, 1968.CrossRefGoogle Scholar
  54. Jackman, C. H., H. S. Porter and J. E. Frederick, Upper limits on production rate of NO per ion pair, Nature, 280, 170, 1979.CrossRefGoogle Scholar
  55. Jackman, C. H., J. E. Frederick and R. S. Stolarski, Production of odd nitrogen in the stratosphere and mesosphere: an intercomparison of source strengths, J. Geophys. Res., 85, 7495, 1980.CrossRefGoogle Scholar
  56. Jegou, J. P., C. Granier, M. L. Chapin and G. Megie, General theory of the alkali metals present in the Earth’s upper atmosphere, in press, Annales Geophysicae, 1984.Google Scholar
  57. Johnson, C.Y., E.B. Meadows and J.C. Holmes, Ion composition of the arctic ionosphere, J. Geophys. Res., 63, 443, 1958.CrossRefGoogle Scholar
  58. Kawahira, K., An observational study of the D-region winter anomaly and sudden stratospheric warmings, J. Atm. Terr. Phys., 44, 947, 1982.CrossRefGoogle Scholar
  59. Keneshea, T.J., R.S. Narcisi, and W. Swider, Diurnal model of the E region, J. Geophys., 75, 845, 1970.CrossRefGoogle Scholar
  60. Kley, D., G.M. Lawrence and E.J. Stone, The Yield of N(2D) atoms in the dissociative recombination of NO+, J. Chem. Phys., 66, 4157, 1977.CrossRefGoogle Scholar
  61. Koshelev, V.V., Variations of transport conditions and winter anomaly in the D-ionospheric region, J. Atmos. Terr. Phys., 41, 431, 1979.CrossRefGoogle Scholar
  62. Labitzke, K., K. Paetzoldt and H. Schwentek, Planetary waves in the strato- and mesosphere during the Western European Winter anomaly campaign 1975/76 and their relation to ionospheric absorption, J. Atmos. Terr. Phys., 41, 1149, 1979.CrossRefGoogle Scholar
  63. Leu, M.T., M.A. Biondi and R. Johnsen, Measurements of the recombination of elections with H3O+(H20)n series ions, Phys. Rev., A7, 292, 1973.Google Scholar
  64. Liu, S. C., and G. C. Reid, Sodium and other minor constituents of meteoritic origin in the atmosphere, Geophys. Res. Lett., 6, 283, 1979.CrossRefGoogle Scholar
  65. Massie, S.T., PhD thesis, University of Colorado, Boulder, CO, 1979.Google Scholar
  66. Mc Crumb, J.L. and F. Arnold, High sensitivity detection of negative ions in the stratosphere, Nature, 294, 136, 1981.CrossRefGoogle Scholar
  67. Mechtly, E.A. and J.S. Shirke, Rocket electron concentration measurements on winter days of normal and anomalous absorption, J. Geophys. Res., 73, 6243, 1968.CrossRefGoogle Scholar
  68. Mechtly, E.A. and L.G. Smith, Seasonal variation of the lower ionosphere at Wallops Island during the IQSY, J. Atmos. Terr. Phys., 30, 1555, 1968.CrossRefGoogle Scholar
  69. Murad, E., Problems in the chemistry of metallic species in the D region, J. Geophys. Res., 5525, 1978.Google Scholar
  70. Narcisi, R.S. and A.D. Bailey, Mass spectrometric measurements of positive ions at altitudes from 64 to 112 kilometers, J. Geophys. Res., 70, 3687, 1965.CrossRefGoogle Scholar
  71. Narcisi, R.S., A.D. Bailey, L. Della Lucca, C. Sherman and D.M. Thomas, Mass spectrometric measurements of negative ions in the D- and lower E-regions, J. Atmos. Terr. Phys., 33, 1147, 1971.CrossRefGoogle Scholar
  72. Nicolet, M., Contribution a l’etude de la structure de l’ionosphere, Mrn. Inst. Mtor. Belge, n 19, 83, 1945.Google Scholar
  73. Nicolet, M. and A.C. Aikin, The formation of the D region of the ionosphere, J. Geophys. Res., 65, 5, 1960.CrossRefGoogle Scholar
  74. Nicolet, M. and W. Peetermans, The production of nitric oxide in the stratosphere of oxidation of nitrous oxide, Ann. Geophys., 28, 751, 1972.Google Scholar
  75. Niehaus, A., Excitation and dissociation of molecules by electron bombardment. Measurement of the formation probability for neutral fragments as a function of electron energy (in German), Z. Naturf., 22a, 690, 1967.Google Scholar
  76. Norton, R. B. and C. A. Barth, Theory of nitric oxide in the Earth’s atmosphere, J. Geophys. Res., 75, 3903, 1970.CrossRefGoogle Scholar
  77. Offermann, D., An integrated GBR campaign for the study of the D region winter anomaly in western Europe 1975/76, J. Atm. Terr. Phys., 41, 1047, 1979.CrossRefGoogle Scholar
  78. Park, C. and G.P. Menees, Odd nitrogen production by meteoroids, J. Geophys. Res., 83, 4029, 1978.CrossRefGoogle Scholar
  79. Paulsen, D.E., R.E. Huffman and J.C. Larrabee, Improved photoionization of O2(1Δg) in the D region, Radio Science, 7, 51, 1972.CrossRefGoogle Scholar
  80. Phelps, A.V. and J.L. Pack, Electron collision frequencies in nitrogen and in the lower ionosphere, Phys. Rev. Lett., 3, 340, 1959.CrossRefGoogle Scholar
  81. Potemra, T.A., Ionizing radiation affecting the lower ionosphere, pp. 21–37, in: Holtet, J.A. (ed.), ELF-VLF radio wave propagation, D. Reidel Publishing Company, Dordrecht — Holland, 1974.Google Scholar
  82. Rapp, D., P. Englander-Golden and D.D. Briglia, Cross sections for dissociative ionization of molecules by electron impact, J. Chem. Phys., 42, 4081, 1965.CrossRefGoogle Scholar
  83. Reagan, J.B., R.C. Gunton, J.E. Evans, R.W. Nightingale, R.G. Johnson, W.L. Imhof and R.E. Meyerrott, Effects of the August 1972 solar particle events on stratospheric ozone in: Lockheed Report D 630455, 1978.Google Scholar
  84. Rees, M. H., and R. G. Roble, Morphology of N and NO in auroral substorms, Planet. Space Sci., 27, 453, 1978.CrossRefGoogle Scholar
  85. Reid, G. C., The production of water cluster positive ions in the quiet daytime D-region, J. Geophys. Res., 25, 275, 1977.Google Scholar
  86. Rosenberg, T.J. and L.J. Lanzerotti, Direct energy inputs to the middle atmosphere, pp. 43–70, in: Maynard, N.C. (ed.), Middle atmosphere electro dynamics, NASA CP-2090, 1979.Google Scholar
  87. Rusch, D.W., J.-C. Gerard, S. Solomon, P.J. Crutzen, and G. C. Reid, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. — I. Odd nitrogen, Planet. Sp. Sci., 29, 767, 1981.CrossRefGoogle Scholar
  88. Schwentek, H., Ionospheric absorption between 53 N and 53 S observed on board ship, J. Atm. Terr. Phys., 38, 89, 1976.CrossRefGoogle Scholar
  89. Sen, H.K. and A.A. Wyller, On the generalizations of the Appleton-Hartree magnetoionic formulas, J. Geophys. Res., 65, 3931, 1960.CrossRefGoogle Scholar
  90. Smith, D., N.G. Adams and M.J. Church, Mutual neutralization rates of ionospherically important ions, Planet. Space Sci., 24, 697, 1976.CrossRefGoogle Scholar
  91. Smith, D., N.G. Adams and E. Alge, Ion-ion mutual neutralization and ion-neutral switching reactions of some stratospheric ions, Planet. Space Sci., 4, 449, 1981.CrossRefGoogle Scholar
  92. Solomon, S., D.W. Rusch, J.-C. Gerard, G.C. Reid, and P.J. Crutzen, The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd nitrogen, Planet. Sp. Sci., 29, 885–893, 1981.CrossRefGoogle Scholar
  93. Solomon, S., E.E. Ferguson, D.W. Fahey and P.J. Crutzen, On the chemistry of H2O, H2 and meteoritic ions in the mesosphere and lower thermosphere, Planet. Space Sci., 30, 1117, 1982.CrossRefGoogle Scholar
  94. Solomon, S., P.J. Crutzen and R.G. Roble, Photochemical coupling between the thermosphere and the lower atmosphere. I. Odd nitrogen from 50 to 120 km, J. Geophys. Res., 87, 7206, 1982a.CrossRefGoogle Scholar
  95. Solomon, S., G.C. Reid, R.G. Roble and P.J. Crutzen, Photochemical coupling between the thermosphere and the lower atmosphere. II. D-region ion chemistry and the winter anomaly, J. Geophys. Res., 87, 7221, 1982b.CrossRefGoogle Scholar
  96. Solomon, S., G. C. Reid, D. W. Rusch, and R. J. Thomas, Mesospheric ozone depletion during the solar proton event of July 13, 1982, Geophys. Res. Lett., 10, 257, 1983.CrossRefGoogle Scholar
  97. Stewart, A.I., Photoionization coefficients and photoelectron impact excitation efficiences in the daytime ionosphere, J. Geophys. Res., 75, 31, 1970.Google Scholar
  98. Swider, W. and T. J. Keneshea, Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event, Planet. Space Sci., 21, 1969, 1973.CrossRefGoogle Scholar
  99. Sze, N. D., M. K. W. Ko, W. Swider, and E. Murad, Atmospheric sodium chemistry I. The altitude region 70–100 km, Geophys. Res. Lett., 9, 1187, 1982.CrossRefGoogle Scholar
  100. Taubenheim, J., Meteorological control of the D region, Space Science Reviews, 34, 397, 1983.CrossRefGoogle Scholar
  101. Thomas, L., Recent developments and outstanding problems in the theory of the D region, Radio Sci., 9, 121, 1974.CrossRefGoogle Scholar
  102. Thorne, R.M., Influence of relativistic electron precipitation on the lower ionosphere and stratosphere, pp. 161–168, in: Grandal, B. and Holtet, J.A. (eds.), Dynamical and chemical coupling between the neutral and ionized atmosphere, D. Reidel Publishing Company, (Dordrecht-Holland), 1977a.Google Scholar
  103. Thorne, R.M., Energetic radiation belt electron precipitation: a natural depletion mechanism for stratospheric ozone, Science, 195, 187, 1977b.CrossRefGoogle Scholar
  104. Thorne, R.M., The importance of energetic particle precipitation on the chemical composition of the middle atmosphere, Pageoph., 118, 128, 1980.CrossRefGoogle Scholar
  105. Vampola, A. L., and D. J. Gorney, Electron energy deposition in the middle atmosphere, J. Geophys. Res., 88, 6267, 1983.CrossRefGoogle Scholar
  106. Viggiano, A.A., R.A. Perry, D.L. Albritton, E.E. Ferguson and F.C. Fehsen feld, The role of H2SO4 in stratospheric negative ion chemistry, J. Geo phys. Res., 85, 4551, 1980.CrossRefGoogle Scholar
  107. Warneck, P., Cosmic radiation as a source of odd nitrogen in the stratosphere, J. Geophys. Res., 77, 33, 6589, 1972.CrossRefGoogle Scholar
  108. Winters, H.F., Ionic absorption and dissociation cross section for nitrogen (Σ), J. Chem. Phys., 44, 1472, 1966.CrossRefGoogle Scholar
  109. Zbinden, P.A., M.A. Hidalgo, P. Eberhardt and J. Geiss, Mass spectrometer measurements of the positive ion composition in the D and E regions of the ionosphere, Planet. Space Sci., 23, 1621, 1975.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1986

Authors and Affiliations

  1. 1.Institut d’Aéronomie Spatiale and Université Libre de BruxellesBrusselsBelgium
  2. 2.Aeronomy LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations