Skip to main content

Numerical Relativistic Gravitational Collapse with Spatial Time Slices

  • Chapter
Astrophysical Radiation Hydrodynamics

Part of the book series: NATO ASI Series ((ASIC,volume 188))

Abstract

In the usual flatspace hydrodynamics, there is a unique split between Eulerian and Lagrangian observers. An Eulerian observer is one at rest in space, while the Lagrangian observer is one at rest in the fluid. We can define an observer at an event in spacetime by giving his 4-velocity at that event. The path through spacetime taken by the observer is called the timeline of that observer. In flat Minkowski spacetime (the spacetime of special relativity), the Eulerian observer’s 4-velocity is exceedingly simple, because the time slices (3-spaces representing a given instant of time) are parallel flat 3-planes. Since the Eulerian observer is at rest, his 4-velocity is normal to the time slice. He is not shearing, converging, accelerating, or rotating relative to nearby Eulerian observers. In contrast, the Lagrangian observer at the same event is doing all these things, relative to nearby Lagrangian observers. While the timelines of the Lagrangian observers, following the fluid particles, are complicated curved trajectories through spacetime, the Eulerian observer’s timelines are straight and parallel to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Arnowitt, R., S. Deser, and C.W. Misner: 1962, “The Dynamics of General Relativity,” in Witten (ed.), Gravitation: An Introduction to Current Research, John Wiley, New York, pp. 227–265.

    Google Scholar 

  • Bardeen, J.M. and T. Piran: 1983, “General Relativistic Axisymmetric Rotating Systems: Coordinates and Equations,” Phys. Reports 96, pp. 206–250.

    Article  MathSciNet  ADS  Google Scholar 

  • Brill, D.R.: 1959, “On the Positive Definite Mass of the Bondi-Weber-Wheeler Time-Symmetric Gravitational Waves,” Ann. Phys. 7, pp. 466–483.

    Article  MathSciNet  ADS  Google Scholar 

  • Cantor, M.: 1979, “A Necessary and Sufficient Conditon for York Data to Specify and Asymptotically Flat Spacetime,” J. Math. Phys. 20, pp. 1741–1744.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Centrella, J. and J.R. Wilson: 1983, “Planar Numerical Cosmology I. The Differential Equations,” Astrophys. J. 273, pp. 428–435.

    Article  ADS  Google Scholar 

  • Centrella, J. and J.R. Wilson: 1984, “Planar Cosmology II. The Difference Equations and Numerical Tests,” Astrophys. J. Suppl. 54, pp. 229–250.

    Article  ADS  Google Scholar 

  • Dykema, P.G.: 1980, “Numerical Simulation of Axisymmetric Gravitational Collapse,” Ph. D. thesis, Univ. of Texas at Austin (unpublished).

    Google Scholar 

  • Eardley, D. and L. Smarr: 1979, “Time Functions in Numerical Relativity: Marginally Bound Dust Collapse,” Phys Rev. D19, pp. 2239–2259.

    MathSciNet  ADS  Google Scholar 

  • Eardley, D.: 1979, “Global Problems in General Relativity,” in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 127–138.

    Google Scholar 

  • Eppley, K.: 1979, “Pure Gravitational Waves,” in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 275–292.

    Google Scholar 

  • Estabrook, F., H. Wahlquist, S. Christensen, B. DeWitt, L. Smarr, and E. Tsiang: 197 3, “Maximally Slicing a Black Hole,” Phys. Rev. D7, pp. 2814–2817.

    ADS  Google Scholar 

  • Evans, C.R.: 1984a, “A Method for Numerical Simulation of Gravitational Collapse and Gravitational Radiation Generation,” in J. Centrella, R. Bowers, J. LeBlanc, and M. Le Blanc (eds.), Numerical Astrophysics: A Meeting in Honor of James Wilson, Jones and Bartlet, Portola Valley CA, (in press).

    Google Scholar 

  • Evans, C.R.: 1984b, “A Method for Numerical Relativity: Simulation of Axisymmetric Gravitational Collapse and Gravitational Radiation Generation,” Ph. D. thesis, University of Texas at Austin (unpublished).

    Google Scholar 

  • Haugan, M.P., S.L. Shapiro, and I. Wasserman: 1982, “The Suppression of Gravitational Radiation from Finite-Size Stars Falling Into Black Holes,” Astrophys. J. 257, pp. 283–290.

    Article  ADS  Google Scholar 

  • Hawley, J.F., L.L. Smarr, and J.R. Wilson: 1984, “A Numerical Study of Nonspherical Black Hole Accretion. II. Finite Differencing and Code Calibration,” Astrophys. J. Suppl. 55, pp. 211–246.

    Article  ADS  Google Scholar 

  • Landau, L.D. and E.M. Lifshitz: 1941, Teoriya Polya, Nauka, Moscow, (English translation The Classical Theory of Fields), Addison-Wesley, Cambridge.

    Google Scholar 

  • Leith, C.E.: 1965, “Numerical Simulation of the Earth’s Atmosphere,” Methods of omputational Physics, 4, pp. 1.

    Google Scholar 

  • Lichnerowicz, A.: 1944, “L1integration des Equations de la Gravitation Relativiste et le Probleme des n Corps,” J. Math. Pure Appl. 23, pp. 37–63.

    MathSciNet  MATH  Google Scholar 

  • May, M. and R.H. White: 1966, “Stellar Dynamics and Gravitational Collapse,” in B. Alder, S. Fernbach, and M. Rotenberg (eds.), Methods in Computational Physics, Vol. 7, Academic Press, New York, pp. 219–258.

    Google Scholar 

  • Misner, C.W. and D.H. Sharp: “Relativistic Equations for Adiabat-ic, Spherically Symmetric Gravitational Collapse,” Phys. Rev. 136, pp. B571–B577.

    Google Scholar 

  • Müller, E. and W. Hillebrandt: 1981, “The Collapse of Rotating Stellar Cores,” Astron. Astrophys. 103, pp. 358–366.

    ADS  MATH  Google Scholar 

  • Müller, E.: 1982, “Gravitational Radiation From Collapsing Rotating Stellar Cores,” Astron. Astrophys. 114, pp. 53–59.

    Google Scholar 

  • Nakamura, T., K. Maeda, S. Miyama and M. Saski: 1980, “General Relativistic Collapse of an Axially Symmetric Star. I. The Formulation and The Initial Data,” Prog. Theor. Phys. 63, pp. 1229–1244.

    Article  ADS  Google Scholar 

  • Nakamura, T. and M. Saski: 1981, “Is Collapse of a Deformed Star Always Effectual for Gravitational Radiation,” Phys. Lett. 106, pp. 69–72.

    Google Scholar 

  • Nakamura, T.: 1981, “General Relativistic Collapse of Axially Symmetric Stars Leading to the Formation of Rotating Black Holes,” Prog. Theor. Phys. 65, pp. 1876–1890.

    Article  ADS  Google Scholar 

  • O’Murchadha, N. and J.W. York: 1974, “Initial-Value Problem of General Relativity. I. General Formulation and Physical Interpretation,” Phys. Rev. D10, pp. 428–436.

    MathSciNet  ADS  Google Scholar 

  • Piran, T.: 1980, “Numerical Codes for Cylindrical General Relativistic Systems,” J. Comp. Phys. 35, pp. 254–283.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Piran, T.: 1983, “Methods of Numerical Relativity,” in N. Deruelle and T. Piran (eds.), Gravitational Radiation, North Holland, Amsterdam, 203.

    Google Scholar 

  • Roache, R.J.: 1976, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque.

    Google Scholar 

  • Shapiro, S.L. and S.A. Teukolsky: 1979, “Gravitational Collapse of Supermassive Stars to Black Holes: Numerical Solution of the Einstein Equations,” Astrophys. J. Lett. 234, pp. L177–L181.

    Article  ADS  Google Scholar 

  • Shapiro, S.L. and S.A. Teukolsky: 1980, “Gravitational Collapse to Neutron Stars and Black Holes: Computer Generation of Spherical Spacetimes,” Astrophys. J. 235, pp. 199–215.

    Article  ADS  Google Scholar 

  • Smarr, L.L.: 1975, “The Structure of General Relativity with a Numerical Illustration: The Collision of Two Black Holes,” Ph.D. Dissertation, The University of Texas at Austin, (unpublished).

    Google Scholar 

  • Smarr, L.L.: 1977, “Spacetimes Generated by Computers: Black Holes with Gravitational Radiation,” Ann. N.Y. Acad. Sci. 302, pp. 569–604.

    Article  ADS  Google Scholar 

  • Smarr, L.: 1979, “Gauge Conditions, Radiation Formulae and the Two Black Hole Collision,” in L. Smarr (ed.) Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 245–274.

    Google Scholar 

  • Smarr, L.L.: 1984, “Computational Relativity: Numerical and Algebraic Approaches,” to appear in the Proceedings of the Tenth International Conference on General Relativity and Gravitation.

    Google Scholar 

  • Smarr, L.L., C. Taubes, and J.R. Wilson: 1980, “General Relativistic Hydrodynamics: The Comoving, Eulerian, and Velocity Potential Formalisms,” in F. Tipler (ed.) Essays in General Relativity: A Festschrift for A. Taub, New York, Academic Press, pp. 157–183.

    Google Scholar 

  • Smarr, L. and J.W. York: 1978a, “Radiation Gauge in General Relativity,” Phys. Rev. D17, pp. 1945–1956.

    MathSciNet  ADS  Google Scholar 

  • Smarr, L. and J.W. York: 1978b, “Kinematical Conditions in the Construction of Spacetime,” Phys. Rev. D17, pp. 2529–2551.

    MathSciNet  ADS  Google Scholar 

  • Thorne, K.S.: 1980a, “Gravitational-Wave Research: Current Status and Future Prospects,” Rev. Mod. Phys. 52, pp. 285–297.

    Article  MathSciNet  ADS  Google Scholar 

  • Thorne, K.S.: 1980b, “Multipole Expansions of Gravitational Radiation,” Rev. Mod. Phys. 52, pp. 299–339.

    Article  MathSciNet  ADS  Google Scholar 

  • Wheeler, J.A.: 1964, “Geometrodynamics and the Issue of the Final State,” in C. DeWitt and B.S. DeWitt (eds.), Relativity, Groups, and Topology, Gordon & Breach, New York, pp. 317–522.

    Google Scholar 

  • Wilson, J.R.: 1977, “A Numerical Study of Rotating Relativistic Stars,” in R. Giaconni and R. Ruffini (eds.), Proceedings of the International School of Physics Enrico Fermi LXV, Amsterdam, N. Holland, pp. 644–675.

    Google Scholar 

  • Wilson, J.R.: 1979, “A Numerical Method for Relativistic Hydrodynamics,” in L. Smarr (ed.), Sources of Gravitational Radiation, Cambridge University Press, Cambridge, pp. 423–446.

    Google Scholar 

  • York, J.W.: 1971, “Gravitational Degrees of Freedom and the Initial-Value Problem,” Phys. Rev. Lett. 26, pp. 1656–1658.

    Article  MathSciNet  ADS  Google Scholar 

  • York, J.W.: 1972, “Role of the Conformal Three-Geometry in the Dynamics of Gravitation,” Phys. Rev. Lett. 28, pp. 1082–1085.

    Article  ADS  Google Scholar 

  • York, J.W.: 1973, “Conformally Invariant Orthogonal Decomposition of Symmetric Tensors on Riemannian Manifolds and the Initial-Value Problem of General Relativity,” J. Math. Phys. 14, pp. 456–464.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • York, J.W.: 1979, “Kinematics and Dynamics of General Relativity,” in L. Smarr (ed.), Sources in Gravitational Radiation, Cambridge University Press, Cambridge, pp. 83–126.

    Google Scholar 

  • York, J.W. and T. Piran: 1982, “The Initial Value Problem and Beyond,” in R. Matzner and L. Shepley (eds.), Spacetime and Geometry, University of Texas Press, Austin, pp. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Evans, C.R., Smarr, L.L., Wilson, J.R. (1986). Numerical Relativistic Gravitational Collapse with Spatial Time Slices. In: Winkler, KH.A., Norman, M.L. (eds) Astrophysical Radiation Hydrodynamics. NATO ASI Series, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4754-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4754-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8612-7

  • Online ISBN: 978-94-009-4754-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics