Skip to main content

The Damping of the Chandler Wobble and the Pole Tide

  • Chapter
Earth Rotation: Solved and Unsolved Problems

Part of the book series: NATO ASI Series ((ASIC,volume 187))

Abstract

The damping of the Chandler wobble is an old yet actively researched problem still awaiting resolution in a number of respects. Due to both observational and theoretical limitations the actual damping rate is uncertain even now; a decay time of 45–70 years or more seems probable. The two most likely candidates for dissipating wobble energy are mantle anelasticity and a dynamic response of the oceans to wobble. Because of the frequency dependence of anelastic mechanisms, study of the oceanic response may be useful for constraining low-frequency anelasticity.

The nature of the pole tide, as the oceanic response is known, has been investigated both observationally and theoretically. Data analysis reveals clear evidence of non-equilibrium pole tide characteristics in shallow seas; the products of inertia implied by such characteristics yield significant shallow-sea dissipation of wobble energy. Theoretical explanations of those characteristics are presently being revised, and so far confirm the importance of the shallow seas. Data in the open ocean is sparse; at a few locations it implies statistically significant enhancements great enough to completely damp the wobble. Open-ocean theory so far fails to support the data, but has yet to be extended to realistic oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D. L., 1974. ‘Earthquakes and the rotation of the Earth’, Science, 186, 49–50.

    Article  ADS  Google Scholar 

  • Bondi, H. and T. Gold, 1955. ‘On the damping of the free nutation of the earth’, Mon. Not. Roy. Astr. Soc., 115, 41–46.

    ADS  Google Scholar 

  • Braginskiy, S. I. and V. M. Fishman, 1976. ‘Electromagnetic interaction of the core and mantle when electrical conductivity is concentrated near the core boundary’, Geomag. Aeron., 16, 443–446.

    Google Scholar 

  • Braginskiy, S. I. and V. V. Nikolaychik, 1973. ‘Estimation of the electrical conductivity of the Earth’s lower mantle from the lag of an electromagnetic signal’, Izvestiya Akad. Nauk SSSR (Fizika zemli), 9, 77–79.

    Google Scholar 

  • Brillinger, D. R., 1973. ‘An empirical investigation of the Chandler Wobble and two proposed excitation processes’, Bull. Int. Statist. Inst., 45(3), 413–434.

    Google Scholar 

  • Bukowinski, M. and L. Knopoff, 1976. ‘Electronic transition in iron and the properties of the core’, in The Physics and Chemistry of Minerals and Rocks, ed. R. G. J. Strens, 491–508, John Wiley & Sons, London.

    Google Scholar 

  • Colombo, G. and I. I. Shapiro, 1968. ‘Theoretical model for the Chandler wobble’, Nature, 217, 156–157.

    Article  ADS  Google Scholar 

  • Currie, R. G., 1974. ‘Period and Qw of the Chandler Wobble’, Geophys. J. Roy. Astron. Soc., 38, 179–185.

    Google Scholar 

  • Currie, R. G., 1975. ‘Period Qp and amplitude of the pole tide’, Geophys. J. Roy. Astron. soc., 43, 73–86.

    Google Scholar 

  • Dahlen, F. A., 1976. ‘The passive influence of the oceans upon the rotation of the earth’, Geophys. J. Roy. Astron. Soc., 46, 363–406.

    MATH  Google Scholar 

  • Daillet, S., 1981. ‘Secular variation of the pole tide: correlation with Chandler wobble ellipticity’, Geophys. J. Roy. Astr. Soc., 65

    Google Scholar 

  • Dickman, S. R., 1979. ‘Consequences of an enhanced pole tide’, J Geophys. Res., 84, 5447–5456.

    Article  ADS  Google Scholar 

  • Dickman, S. R., 1982. ‘The pole tide and its geophysical consequences’ (review article), Geophys. J. R. astr. Soc., submitted.

    Google Scholar 

  • Dickman, S. R., 1983. ‘The rotation of the ocean — solid earth system’, J. geophys. Res., 88, 6373–6394.

    Article  ADS  Google Scholar 

  • Dickman, S. R., 1985. ‘The self-consistent dynamic pole tide in global oceans’, Geophys. J. R. astr. Soc., 81, 157–174.

    Google Scholar 

  • Dickman, S. R. & J. R. Preisig, 1985. ‘Another Look at North-Sea Pole Tide Dynamics: Research Note’, Geophys. J. R. astr. Soc., submitted.

    Google Scholar 

  • Dickman, S. R. & D. J. Steinberg, 1985. ‘New aspects of the equilibrium pole tide’, Geophys. J. R. astr. Soc., to be submitted.

    Google Scholar 

  • Gans, R. F., 1972. ‘Viscosity of the Earth’s Core’, J. Geophys. Res., 77, 360–366.

    Article  ADS  Google Scholar 

  • Herring, T. A., C. R. Gwinn, and I. I. Shapiro, 1985. ‘Geophysics by radio interferometry: Power-spectral-density function of the earth’s nutations’, EOS, 66, 245.

    Google Scholar 

  • Jeffreys, H., 1915. ‘The viscosity of the Earth’, Mon. Not. R. astr. Soc., 75, 648–658.

    ADS  Google Scholar 

  • Jeffreys, H., 1920. ‘The chief cause of the lunar secular acceleration’, Mon. Not. R. astr. Soc., 80, 309–317.

    ADS  Google Scholar 

  • Jeffreys, H., 1968. ‘The Variation of Latitude’, Mon. Not. Roy. Astr. Soc., 141, 255–268.

    ADS  Google Scholar 

  • Kanamori, H., 1977. ‘The energy release in great earthquakes’, J Geophys. Res., 82, 2981–2988.

    Article  ADS  Google Scholar 

  • Kanamori, H. and D. L. Anderson, 1977. ‘Importance of physical dispersion in surface-wave and free-oscillation problems: Review’, Rev. Geophys. Space Phys., 15, 105–112.

    Google Scholar 

  • Kelvin, Lord (Sir William Thomson), 1876. ‘Effects of elastic yielding on precession and nutation’ (Presidential Address, British Association), reprinted in Mathematical Physical Papers, 3, 320–335, Cambridge University Press.

    ADS  Google Scholar 

  • Lagus, P. L. & Anderson, D. L., 1968. ‘Tidal dissipation in the Earth and planets’, Phys. Earth planet. Int., 1, 505–510.

    Article  ADS  Google Scholar 

  • Lambeck, K., 1980. The Earth’s Variable Rotation: Geophysical Causes and Consequences, Cambridge University Press.

    Google Scholar 

  • Liu, H.-P., D. L. Anderson, and H. Kanamori, 1976. ‘Velocity Dispersion due to Anelasticity; Implications for Seismology and Mantle Composition’, Geophys. J. Roy. Astr. Soc., 47, 41–58.

    Google Scholar 

  • Mansinha, L. & Smylie, D. E., 1967. ‘Effect of earthquakes on the Chandler wobble and the secular polar shift’, J. geophys. Res., 72, 4731–4743.

    Article  ADS  Google Scholar 

  • Merriam, J. B., 1973. Equilibrium tidal response of a non-global self-gravitating ocean on a yielding earth, M.S. thesis, Memorial University of Newfoundland, St. John’s.

    Google Scholar 

  • Miller, S. P., 1973. Observations and interpretation of the pole tide, M.Sc. thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Miller, S. P. & Wunsch, C., 1973. ‘The pole tide’, Nature Phys. Sci., 246, 98–102.

    Article  ADS  Google Scholar 

  • Munk, W. H. & MacDonald, G. J. F., 1960. The Rotation of the Earth, Cambridge University Press (reprinted with corrections, 1975).

    Google Scholar 

  • Naito, I., 1979. ‘Effects of the pole tide on the Chandler wobble’, J. Phys. Earth, 27, 7–20.

    Article  Google Scholar 

  • O’Connell, R. J. and A. M. Dziewonski, 1976. ‘Excitation of the Chandler wobble by large earthquakes’, Nature, 262, 259–262.

    Article  ADS  Google Scholar 

  • Okubo, S., 1982. ‘Theoretical and observed Q of the Chandler wobble-Love number approach’, Geophys. J. R. astr. Soc., 71, 647–657.

    MATH  Google Scholar 

  • Ooe, M., 1978. ‘An optimal complex AR.MA model of the Chandler Wobble’, Geophys. J. Roy. Astron. Soc., 53, 445–457.

    ADS  Google Scholar 

  • Rochester, M. G., 1970. ‘Polar wobble and drift: A brief history’, in Earthquake Displacement Fields and the Rotation of the Earth, edited by L. Mansinha, D. E. Smylie, and A. E. Beck, p. 3–13, D. Reidel, Hingham, Mass.

    Google Scholar 

  • Rochester, M. G., 1973. ‘The Earth’s rotation’, EOS, 54, 769–781.

    ADS  Google Scholar 

  • Rochester, M. G. and D. E. Smylie, 1965. ‘Geomagnetic core-mantle coupling and the Chandler wobble’, Geophys. J. Roy. Astr. Soc., 10, 289–315.

    Google Scholar 

  • Sekiguchi, N., 1972. ‘On some properties of the excitation and damping of the polar motion’, Publ. Astron. Soc Japan, 24, 99–108.

    MathSciNet  ADS  Google Scholar 

  • Smith, M. L. & Dahlen, F. A., 1981. ‘The period and Q of the Chandler wobble’, Geophys. J. R. astr. Soc., 64, 223–281.

    ADS  MATH  Google Scholar 

  • Smylie, D. E., G. K. C. Clarke and T. J. Ulrych, 1973. ‘Analysis of Irregularities in the Earth’s Rotation’, in Methods in Computational Physics, 13, 391–430.

    Google Scholar 

  • Stacey, F. D., 1977. Physics of the Earth, 2nd edn., Wiley, New York.

    Google Scholar 

  • Taylor, G. I., 1919. ‘Tidal Friction in the Irish Sea’, Phil. Trans. Roy. Soc. Lond., A, 220, 1–33.

    Article  ADS  Google Scholar 

  • Toomre, A., 1974. ‘On the “Nearly Diurnal Wobble” of the Earth’, Geophys. J. Roy. Astr. Soc., 38, 335–348.

    ADS  Google Scholar 

  • Wilson, C. R., 1979. ‘Estimation of the parameters of the Earth’s polar motion’, in Time and the Earth’s Rotation (I.A.U. Symp. No. 82), ed. D. D. McCarthy & J. D. H. Pilkington, 307–312, D. Reidel, Dordrecht.

    Google Scholar 

  • Wilson, C. R. and R. Haubrich, 1976. ‘Meteorological excitation of the Earth’s wobble’, Geophys. J. Roy. Astr. Soc., 46, 707–743.

    ADS  Google Scholar 

  • Wilson, C. R. and R. O. Vicente, 1980. ‘An analysis of the homogeneous ILS polar motion series’, Geophys. J. R. Astr. Soc., 62, 605–616.

    Google Scholar 

  • Wunsch, C., 1974. ‘Dynamics of the pole tide and the damping of the Chandler wobble’, Geophys. J. Roy. Astron. Soc., 39, 539–550.

    Google Scholar 

  • Wunsch, C., 1975. ‘Errata’, Geophys. J. Roy. Astron. Soc., 40, 311.

    Google Scholar 

  • Yatskiv, Ya.S., 1973. ‘Chandler Wobble and Free Diurnal Nutation Derived from Latitude Observations’, Proc. 2nd Int. Symp. Geodesy & Physics of the Earth, Potsdam, 143–151.

    Google Scholar 

  • Zhang, H., 1983. ‘On the Chandler Wobble’. I. Theory, Chin. Astr. Astrophys., 5, 460–468 1981).

    Article  ADS  Google Scholar 

  • Zhang, H., Y. Han, and D. Zheng, 1983. ‘On Chandler Wobble — a result on analysis of observations’, Scientia Sinica, A, 26, 181–192.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Dickman, S.R. (1986). The Damping of the Chandler Wobble and the Pole Tide. In: Cazenave, A. (eds) Earth Rotation: Solved and Unsolved Problems. NATO ASI Series, vol 187. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4750-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4750-4_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-2333-8

  • Online ISBN: 978-94-009-4750-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics