Skip to main content

Very Accurate Coupled Cluster Calculations for Diatomic Systems with Numerical Orbitals

  • Conference paper
Book cover Applied Quantum Chemistry

Abstract

Correlation energies and electron affinities for ground and excited states of polar diatomic systems are investigated. Very accurate methods that combine purely numerical solutions to Hartree-Fock and Bethe-Goldstone equations for orbitals, with coupled-cluster and many-body perturbation methods for electron correlation, are able to obtain 99% of the correlation energy of LiH and 97% for FH. Such methods are thought to be sufficiently accurate that it is meaningful to use these techniques to obtain correlated electron affinities for excited states of diatomic molecules. The first results for excited state affinities are reported for BeO and LiH.

This work is supported by the U.S. AFOSR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981), and references therein.

    Article  CAS  Google Scholar 

  2. F. Coester, Nucl. Phys. 1, 421 (1958)

    Google Scholar 

  3. F. Coester and H. Kummel, Nucl. Phys. 17, 477 (1960)

    Article  CAS  Google Scholar 

  4. J. Cizek, Adv. Chem. Phys. 14, 35 (1969

    Article  CAS  Google Scholar 

  5. W. Kutzelnigg, in Electronic Structure Calculations, ed. H.F. Schaefer, III. Plenum, New York (1978).

    Google Scholar 

  6. R.K. Nesbet, Adv. Chem. Phys. 14, 1 (1969).

    Article  CAS  Google Scholar 

  7. L. Adamowicz, R.J. Bartlett and E.A. McCullough, Phys. Rev. Lett. 54, 426 (1985).

    Article  CAS  Google Scholar 

  8. E.A. McCullough, J. Chem. Phys. 62, 3991 (1975).

    Article  CAS  Google Scholar 

  9. L. Adamowicz and E.A. McCullough, J. Chem. Phys. 75, 2475 (1981).

    Article  CAS  Google Scholar 

  10. R.J. Bartlett arid G.D. Purvis, Int. J. Quant. Chem. 14, 561 (1978)

    Article  CAS  Google Scholar 

  11. R.J. Bartlett arid G.D. Purvis, Physica Scripta 21, 255 (1980).

    Article  CAS  Google Scholar 

  12. G.D. Purvis and R.J. Bartlett, J. Chem. Phys. 7, 1910 (1982)

    Article  CAS  Google Scholar 

  13. G.D. Purvis, R. Shepard, F. Brown and R.J. Bartlett, Int. J. Quantum Chem. 23, 835 (1983)

    Article  CAS  Google Scholar 

  14. R.J. Bartlett, C.E. Dykstra and J. Paldus in Advanced Theories and Computational Approaches to the Electronic Structure of Molecules, pg. 127, Reidel, Dordrecht, The Netherlands (1984).

    Google Scholar 

  15. L. Adamowicz and R.J. Bartlett, Int. J. Quant. Chem., submitted.

    Google Scholar 

  16. Y.S. Lee, S. Kucharski and R.J. Bartlett, J. Chera. Phys. 81, 5906 (1984).

    Article  Google Scholar 

  17. W.D. Laidig and R.J. Bartlett, Chem. Phys. Letters 104, 2614 (1984)

    Article  Google Scholar 

  18. S. Kucharski and R.J. Bartlett, to be published.

    Google Scholar 

  19. B. Jeziorski, H.J. Monkhorst, K. Szalewicz and J.G. Zabolitsky, J. Chem. Phys. 81, 368 (1984)

    Article  CAS  Google Scholar 

  20. K. Szalewicz, B. Jeziorski, H.J. Monkhorst and J.G. Zabolitsky, J. Chem. Phys. 78, 1426 (1983).

    Google Scholar 

  21. N.C. Handy, R.J. Harrison, P.J. Knowles and H.F. Schaefer, J. Chem. Phys. 88, 4852 (1984).

    Article  CAS  Google Scholar 

  22. R.J. Harrison and N.C. Handy, Chem. Phys. Lett. 113, 257 (1985).

    Article  CAS  Google Scholar 

  23. R.J. Bartlett, H. Sekino and G.D. Purvis, Chem. Phys. Lett. 98, 66 (1983).

    Article  CAS  Google Scholar 

  24. R.J. Harrison and N.C. Handy, Chem. Phys. Lett. 113, 257 (1985).

    Article  CAS  Google Scholar 

  25. R.J. Bartlett and D.M. Silver, J. Chem. Phys. 62, 3258 (1975).

    Article  CAS  Google Scholar 

  26. E.A. McCullough, J. Morrison and K.W. Richman, Faraday Soc. Symp. 19, 000 (1984).

    CAS  Google Scholar 

  27. C.F. Bender and E.R. Davidson, Phys. Rev. 183, 23 (1969).

    Article  CAS  Google Scholar 

  28. R.F. Wallis, R. Herman and H.W. Milnes, J. Mol. Spec. 4, 51 (1960).

    Article  CAS  Google Scholar 

  29. L. Carlsten, L.R. Peterson and W.C. Lineberger, Chem. Phys. Lett. 37, 5 (1976).

    Article  CAS  Google Scholar 

  30. K.D. Jordan and W. Luken, J. Chem. Phys. 64, 2760 (1976).

    Article  CAS  Google Scholar 

  31. K.D. Jordan, Acc. Chem. Res. 12, 36 (1976).

    Article  Google Scholar 

  32. K.D. Jordan, K.M. Griffing, J. Kenney, E.C. Anderson and J. Simons, J. Chem. Phys. 64, 4730 (1976).

    Article  CAS  Google Scholar 

  33. K.D. Jordan and R. Seeger, Chem. Phys. Lett. 54, 328 (1978).

    Article  Google Scholar 

  34. B. Liu, 0. Ohata and K. Kirby-Docken, J. Chem. Phys. 67, 1850 (1977).

    Article  CAS  Google Scholar 

  35. W.J. Stevens, J. Chem. Phys. 72, 1536 (1980).

    Article  CAS  Google Scholar 

  36. Y. Yoshioka and K.D. Jordan, J. Chem. Phys. 73, 5899 (1980).

    Article  CAS  Google Scholar 

  37. A.U. Hazi, J. Chem. Phys. 75, 4586 (1981).

    Article  CAS  Google Scholar 

  38. A.M. Karo, M.A. Gardner and J.R. Hiskes, J. Chem. Phys. 68, 1942 (1978).

    Article  CAS  Google Scholar 

  39. O.H. Crawford and W.R. Garrett, J. Chem. Phys. 66, 4968 (1977).

    Article  CAS  Google Scholar 

  40. L. Adamowicz and E.A. McCullough, J. Phys. Chem. 88, 2045 (1984).

    Article  CAS  Google Scholar 

  41. L. Adamowicz and E.A. McCullough, Chem. Phys. Lett. 107, 72 (1984).

    Article  CAS  Google Scholar 

  42. E.A. McCullough, J. Chem. Phys. 75, 1579 (1981).

    Article  CAS  Google Scholar 

  43. W.D. Laidig, G.D. Purvis and R.J. Bartlett, Chem. Phys. Letters (1983).

    Google Scholar 

  44. M. Yoshimine, J, Phys. Soc. Jpn. 25, 1100 (1968).

    Article  CAS  Google Scholar 

  45. A.D. McLean and M. Yoshimine, IBM Research Report 1967.

    Google Scholar 

  46. J. Simons, Ann. Revs. Phys. Chem. 28, 15 (1977).

    Article  CAS  Google Scholar 

  47. H. Sekino and R.J. Bartlett, Int. J. Quantum Chem. Symp. 18, 245 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this paper

Cite this paper

Adamowicz, L., Bartlett, R.J. (1986). Very Accurate Coupled Cluster Calculations for Diatomic Systems with Numerical Orbitals. In: Smith, V.H., Schaefer, H.F., Morokuma, K. (eds) Applied Quantum Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4746-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4746-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8609-7

  • Online ISBN: 978-94-009-4746-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics