Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 183))

Abstract

Clifford algebra was introduced in electromagnetic theory around 1930 and in network theory in 1959. While it is necessary to use Clifford algebra in quantum mechanics in splitting up the Schrödinger equation to get the Dirac equation, it is not necessary to use Clifford algebra in electromagnetic theory or network theory. However, as Clifford algebra is the natural tool to use in connection with, for example, the Minkowski model of Lorentz space, it is quite useful in studying problems dealing with partially polarized waves (the Stokes vector), active, lossy, and noisy networks, etc. Some applications of Clifford algebra in electromagnetic theory and network theory will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ricci M. M. G., Levi-Civita T. (1901), ‘Méthodes de calcul différential absolu et leurs applications’, Math Ann, 54, 125–201.

    Article  MATH  Google Scholar 

  2. Weyl, H. (1921), Raum, Zeit, Materie, 4th ed, Springer, Berlin; in English: Dover, New York.

    MATH  Google Scholar 

  3. Post, E.J. (1962), Formal Structure of Electromagnetics, North-Holland Publ Co.

    Google Scholar 

  4. Kron, G. (1959), Tensors for Circuits, Dover Publ, Inc, New York, N.Y.

    Google Scholar 

  5. Clifford, W.K. (1878), ‘Applications of Grassmann’s extensive algebra’, American J of Math Pure and Applied, 1, 350–358. ‘On the classification of geometric algebras’ Math Papers by William Kingdon Clifford, MacMillan and Co 1882, 397-401.

    MathSciNet  Google Scholar 

  6. Lipschitz, R. (1880), ‘Principles d’un calcul algébrique qui contient comme espèces particulières le calcul des quantités imaginaires et des quaternions’, CR Acad Sc Paris, 91, 619–621, 660-664. Also: (1887) Bull des Sciences Math, 2 seriei7 9, 115-120.

    Google Scholar 

  7. Study, E., Cartan, E. (1908), ‘Nombres complexes’, L’Encyclopédie des Sciences Math, 1, 329–468 (Clifford algebra 463-466).

    Google Scholar 

  8. Riesz, M. (1958), Clifford Numbers and Spinors, Lecture Series, No 38, The Institute for Fluid Dynamics and Appl. Math, Univ. of Maryland, Maryland.

    MATH  Google Scholar 

  9. Hestenes, D. (1966), Space-Time Algebra, Gordon and Breach, New York, N.Y.

    MATH  Google Scholar 

  10. Grassmann, H. (1854), ‘Sur les différents genres de multiplication’, J für die reine und angewandte Math, 49, 123–141.

    Google Scholar 

  11. Dillner, G. (1876), ‘Versuch einer neuen Entwicklung der Hamilton’schen Methode, gennant “Calculus of quaternions”,’ Math Ann, 11, 168–193.

    Article  MathSciNet  Google Scholar 

  12. Grassmann, H. ( 1877 ), ‘Der Ort der Hamilton’sehen quaternionen in der Ausdehnungslehre’, Math Ann, 12, 375–386.

    Article  MathSciNet  Google Scholar 

  13. Study, E. (1904), ‘Der Ort der Hamilton’ sehen quaternionen in der Ausdehnungslehre (von H. Grassmann)’, Hermann Grassmanns Gesammelte Math u Phys Werke, 2, Part 1, (herausgegeben von E. Study, G. Scheffers und F. Engel, Teubner, Leipzig).

    Google Scholar 

  14. Cartan, E. (1938), Leçons sur la Theorie des Spineurs, I. et II, Actualités Scientifiques et Industrielles Nos 643 et 70T, Hermann et Cie, Paris.

    Google Scholar 

  15. Brauer, R., Weyl, H. (1935), ‘Spinors in n dimensions’, Am J of Math, 57, 425–449.

    Article  MathSciNet  Google Scholar 

  16. Einstein, A., Lorentz, H.A., Minkowski, H., and Weyl, H. (1923), The Principle of Relativity, Methuen and Co, translated by Dover Publs, Inc.

    Google Scholar 

  17. Rojansky, V. (1938), Introductory Quantum Mechanics, Prentice-Hall, Inc, New York. (Dirac: Chapter XIV, Pauli: Chapter XIII).

    MATH  Google Scholar 

  18. Riesz, M. (1946), ‘Sur certaines notions fondamentales en théorie quantique relativiste’, Dixième Congres des Mathématiciens Scandinaves, 123–148.

    Google Scholar 

  19. Cartan, E. (1971), Les Systèmes Différentiels Exterieurs et Leurs Applications Géométriques, Hermann, Paris (Lectures 1936–37). Also, Cartan, E. (1924), Ann Ecole Normale, 41, 1.

    MATH  Google Scholar 

  20. Van Danzig, D. (1934), ‘The fundamental equations of electromagnetism, independent of metrical geometry’, Proc Amsterdam Acad, 37, 421–427.

    Google Scholar 

  21. Kahler, E. (1937), ‘Bemerkungen über die Maxwellschen Gleichungen’, Abh der Hamburgischen Universität, 12, 1 Heft, 1–28.

    Article  Google Scholar 

  22. Deschamps, G.A. (1970), ‘Exterior differential forms’, Mathematics Applied to Physics, Chapter III, (ed E. Roubine), Springer Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  23. Deschamps, G.A. (1981), ‘Electromagnetics and differential forms’, Proc IEEE, 69, 676–696.

    Article  Google Scholar 

  24. Hestenes, D., Sobczyk, G. (1984), Clifford Algebra to Geometric Calculus, D. Reidel Publ Co, Dordrecht, Holland.

    Book  MATH  Google Scholar 

  25. Silberstein, L. (1912), ‘Quaternionic form of relativity’, Phil Mag, 23, 790–809.

    Google Scholar 

  26. Silberstein, L. (1914), The Theory of Relativity, McMillan, London.

    MATH  Google Scholar 

  27. Bolinder, E.F. (1957), ‘The classical electromagnetic equations expressed as complex four-dimensional quantities’, J. Franklin Inst, 263, 213–223.

    Article  MathSciNet  Google Scholar 

  28. Proca, A. (1930), ‘Sur l’équation de Dirac’, J de Physique, Ser 7, T1, 235–248. Also: CR Paris, T190, séance 16.6.1930, 1377-1379, and T191, séance 7.7.1930, 26-29.

    Google Scholar 

  29. Juvet, G. (1930), ‘Opérateurs de Dirac et équations de Maxwell’, Comment Math Helv, 2, 225–235. Juvet, G. (1932), ‘Les nombres de Clifford et leurs applications à la physique mathématique’, Congrès int des mathematiciens de Zurich, 306-307.

    Article  MathSciNet  MATH  Google Scholar 

  30. Juvet, G., Schidlof, A. (1932), ‘Sur les nombres hypercomplexes de Clifford et leurs applications à l’analyse vectorielle ordinaire, à l’électromagnétisme de Minkowski et à la théorie de Dirac’, Bull Soc Neuchateloise Sc Nat, 57, 127–147.

    Google Scholar 

  31. Mercier, M. (1935), ‘Expression des équations de l’électromagnétisme au moyen des nombres de Clifford’, Thesis No 953, University of Genève.

    Google Scholar 

  32. Lounesto, P. (1979), Spinor Valued Regular Functions in Hyper-Complex Analysis, Helsinki Univ of Techn, Inst of Math, Report HTKK-MAT-A154, 1–79.

    Google Scholar 

  33. Riesz, M. (1959), Private communication, April 11, 1959, Indiana University, Dept of Math, Bloomington, Indiana.

    Google Scholar 

  34. Pauli, W. (1958), Theory of Relativity, Pergamon Press (Eq 222, P 85).

    Google Scholar 

  35. Lewis, G.N. (1910), ‘On four-dimensional vector analysis, and Its application in electrical theory’, Contrib from Res Lab of Phys Chem of the Mass Inst of Techn, No 58, 165–181

    Google Scholar 

  36. Wilson, E.B., Lewis, G.N. (1912), ‘The space-time manifold of relativity. The non-Euclidean geometry of mechanics and electromagnetics’, Proc Am Acad of Arts and Sciences, 48, No 11, 389–507.

    Article  Google Scholar 

  37. Bolinder, E.F. (1951), Fourier Transforms in the Theory of Inhomo-geneous Transmission Lines, Trans Royal Inst of Techn, No 48, 1–84. Acta Polytechnica Elec Eng Series 3. Also: Proc IRE, 38, 1354, 1950.

    Google Scholar 

  38. Cerrillo, M.V. et al (1952), ‘Basic existence theorems in network synthesis’, I) M.V. Cerrillo, Quart Prog Rep, RLE, MIT, Jan 15, 1952, 71-95,-II) M.V. Cerrillo, QPR, RLE, MIT, April 15, 1952, 80-89. — III) M.V. Cerrillo, E.A. Guillemin, Techn Rep 233, RLE, MIT, June 4, 1952, — IV) M.V. Cerrillo, E.F. Bolinder, Techn Rep 246, RLE, MIT, Aug 15, 1952.

    Google Scholar 

  39. Bolinder, E.F. (1985), ‘Basic study of elliptic low-pass filters by means of the Minkowski model of Lorentz space’, Proc of the Symp on Math Theory in Network Systems, Stockholm, Sweden, June 1985 (to be published).

    Google Scholar 

  40. Weinberg, L. (1962), Network Analysis and Synthesis, McGraw Hill Book Co.

    Google Scholar 

  41. Riesz, M. (1943), ‘An instructive picture of non-Euclidean geometry. Geometric excursions into relativity theory (in Swedish)’, Acta Physiogr Soc, Lund, NF 53, No 9, 1–76.

    Google Scholar 

  42. Mikkola, R., Lounesto, P. (1983), ‘Computer-aided vector algebra’, Int J Math Educ Sci Technol, 14, No 5, 573–578.

    Article  MATH  Google Scholar 

  43. Bolinder, E.F. (1959), ‘Impedance, power, and noise transformations by means of the Minkowski model of Lorentz space’, Ericsson Techniques, No 2, 1–35.

    Google Scholar 

  44. Bolinder, E.F. (1982), ‘Unified microwave network theory based on Clifford algebra in Lorentz space’, Proc 12th European Microwave Conf, Helsinki, 24–35.

    Google Scholar 

  45. Bolinder, E.F. (1957), ‘Impedance transformations by extension of the isometric circle method to the three-dimensional hyperbolic space’, J Math and Physics, 36, 49–61.

    MathSciNet  Google Scholar 

  46. Bolinder, E.F. (1959), ‘Theory of noisy two-port networks’, J. Franklin Inst, 267, 1–23, Tech Report 344, Res Lab of Electronics, MIT, June 1958

    Article  MathSciNet  Google Scholar 

  47. Darlington, S. (1939), ‘Synthesis of reactance 4-poles which produce prescribed insertion loss characteristics’, J Math Phys, 30, 257–353.

    MathSciNet  Google Scholar 

  48. Szentirmai, G. (1973), ‘Synthesis of multiple-feedback active filters’, Bell Syst Techn J, 52, 527–555.

    Google Scholar 

  49. Tuttle, D.F. (1974), ‘A common basis for the Darlington and Szentirmai network syntheses’, Proc IEEE, 62, 389–390.

    Article  Google Scholar 

  50. Stokes, G.G. (1852), ‘On the composition and resolution of streams of polarized light from different sources’, Trans Cambr Phil Soc, 9 399–416. — Math and Phys Papers by G.G. Stokes, 3, 233-258, Cambr Uhiv Press, 1922.

    Google Scholar 

  51. Deschamps, G. (1952), ‘Geometric viewpoints in the representation of waveguides and waveguide junctions’, Proc Symp on Modern Network Synthesis, Polytechn Inst of Brooklyn, 277–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Bolinder, E.F. (1986). Electromagnetic Theory and Network Theory Using Clifford Algebra. In: Chisholm, J.S.R., Common, A.K. (eds) Clifford Algebras and Their Applications in Mathematical Physics. NATO ASI Series, vol 183. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4728-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4728-3_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8602-8

  • Online ISBN: 978-94-009-4728-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics