Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 181))

Abstract

Separation does not take place spontaneously and to drive any separation process, work must be done on the overall system to supply the necessary increase in free energy. The forces—pressure, electric potential and concentration gradients—act differently on the components to be separated and constitute an important variable in membrane and process selection. When several transportable substances are present together, they interact to influence one another’s permeation properties in many ways. They may affect the solubility and diffusion coefficients of all the substances in the membrane and their fluxes may interact by direct exchange of molecular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hwang S.-T. and Kammermeyer K.: 1975, “Membranes in separations,” in Techniques of Chemistry, Vol. 7. Wiley-Interscience, New York; Meares P. (ed.): 1976, Membrane Separation Processes. Elsevier, Amsterdam.

    Google Scholar 

  2. Meares P.: 1975, “Selective transport processes in polymers.” In Proc. Internat. Symp. Macromol. Mano, E.B. (ed.) Elsevier, Amsterdam, pp. 131–152.

    Google Scholar 

  3. Yasuda H. and Stannet V.: 1975, “Permeability coefficients.” In Polymer Handbook, 2nd Ed. Brandrup, J. and Immergut, E.H. (eds.) Wiley-Interscience, New York, pp. III 229–240.

    Google Scholar 

  4. Stern S.A.: 1972, “Gas permeation processes,” in Industrial Processing with Membranes. Lacey, R.E. and Loeb, S. (eds.) Wiley-Interscience, New York, Ch. 13.

    Google Scholar 

  5. Ward W.J.: 1970, “Analytical and experimental studies of facilitated transport.” A.I.Ch.E.J. 16, pp. 405–410.

    CAS  Google Scholar 

  6. Meares P.: 1979, “Transport through polymer membranes from the liquid phase.” Ber. Bunsenges. Phys. Chem. 83, pp. 342–351.

    CAS  Google Scholar 

  7. Reid C.E. and Kuppers J.R.: 1959, “Physical characteristics of osmotic membranes of organic polymers.” J. Appl. Polymer Sci. 2, pp. 264–272.

    Article  CAS  Google Scholar 

  8. Adam W.J., Lüke B. and Meares P.: 1983, “The separation of mixtures of organic liquids by hyperfiltration.” J. Membrane Sci. 13, pp. 127–149.

    Article  CAS  Google Scholar 

  9. Meares P., Craig J.B. and Webster J.: 1970, “Diffusion and flow of water in homogeneous cellulose acetate membranes,” in Diffusion Processes. Vol. 1. J. Sherwood et al. (eds.), Gordon and Breach, London, pp. 609–627.

    Google Scholar 

  10. Paul D.R. and Paciotti J.D.: 1975, “Driving force for hydraulic and pervaporative transport in homogeneous membranes.” J. Polymer Sci. Polym. Phys. Edn. 13, pp. 1201–1214.

    Article  CAS  Google Scholar 

  11. Paul D.R.: 1972, “The role of membrane pressure in reverse osmosis.” J. Appl. Polymer Sci. 16, pp. 771–782.

    Article  CAS  Google Scholar 

  12. Greenlaw F.W., Prince W.D., Shelden R.A. and Thompson E.V.: 1977, “Dependence of diffusive permeation rates on upstream and downstream pressures. I.” J. Membrane Sci. 2, pp. 141–151.

    Article  CAS  Google Scholar 

  13. Thau G., Bloch R. and Kedem O.: 1966, “Water transport in porous and non-porous membranes.” Desalination 1, pp. 129–138.

    Article  CAS  Google Scholar 

  14. Meares P.: 1977, “The mechanism of water transport in membranes.” Phil. Trans. Roy. Soc. (London) B278, pp. 113–154.

    Google Scholar 

  15. Jonsson G. and Boesen C.E.: 1975, “Water and solute transport through cellulose acetate reverse osmosis membranes.” Desalination 17, pp. 145–165.

    Article  CAS  Google Scholar 

  16. Sourirajan S.: 1977, Reverse Osmosis and Synthetic Membranes. N.R.C. Ottawa Ch. 2, 3.

    Google Scholar 

  17. Nasim K., Meyer M.C. and Autian J.: 1972, “Permeation of aromatic organic compounds from aqueous solutions through polyethylene.” J. Pharm. Sci. 61, pp. 1775–1780.

    Article  CAS  Google Scholar 

  18. Meares P.: 1977, Membrane Separation Processes: Principles, Practice and Prospects. Interdiscip. Sci. Rev. 2, pp. 327–336.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Meares, P. (1986). Separation by Membranes. In: Bungay, P.M., Lonsdale, H.K., de Pinho, M.N. (eds) Synthetic Membranes: Science, Engineering and Applications. NATO ASI Series, vol 181. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4712-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4712-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8596-0

  • Online ISBN: 978-94-009-4712-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics