Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 29))

Abstract

Let us consider a smooth (i.e. C or Ck) nonlinear control system

$$ \dot{x} = f(x,u)\quad x \in X, u \in U $$
((1))

where f is a smooth mapping. For simplicity of exposition we will take X to be ℝn or an open subset of ℝn. (X could be an arbitrary manifold.) Furthermore we will make the (restrictive) assumption that U equals ℝm or an open subset of ℝm (or an arbitrary manifold without boundary). Let now L : X × U → ℝ and K : X → ℝ be smooth functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978

    MATH  Google Scholar 

  2. R.W. Brockett, Control theory and analytical mechanics, pp 1–46 of Geometric control theory(Eds. C. Martin and R. Hermann), Vol VII of Lie Groups: History, Frontiers and Applications, Math Sci Press, Brookline, 1977.

    Google Scholar 

  3. P.A.M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, New York, 1964.

    Google Scholar 

  4. R. Gabasov, F.M. Kirillova, High order necessary conditions for optimality, SIAM J. Control 10, 127–168, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.W. Grizzle, S.I. Marcus, Optimal control of systems possessing symmetries, IEEE Tr. Aut. Control, 29, 1037–1040, 1984.

    Article  MathSciNet  Google Scholar 

  6. R.W. Hirschorn, (A,B)-invariant distributions and disturbance decoupling of nonlinear systems, SIAM J. Control & Opt, 19, 1–19, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Isidori, A.J. Krener, C. Gori-Giorgi, S. Monaco, Nonlinear decoupling via feedback: A differential geometric approach, IEEE Tr. Aut. Control, 26, 331–345, 1981

    Article  MathSciNet  MATH  Google Scholar 

  8. A.J. Krener, The high order maximal principle and its application to singular extremals, SIAM J. Control & Opt, 15, 256–293, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Lamnabhi-Lagarrigue, Doctoral thesis, Paris, May 1985.

    Google Scholar 

  10. A.J. van der Schaft, Symmetries and conservation laws for Hamiltonian system with inputs and outputs: A generalization of Noether’s theorem, Systems & Control Letters, 1, 108–115, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  11. A.J. van der Schaft, Observability and controllability for smooth nonlinear systems, Siam J. Control & Opt., 20, 338–354, 1982

    Article  MATH  Google Scholar 

  12. A.J. van der Schaft, System theoretic descriptions of physical systems, Doct. Dissertation, Groningen, 1983. Also: CWI Tracts No. 3, CWI, Amsterdam, 1984.

    Google Scholar 

  13. A.J. van der Schaft, Symmetries in optimal control, Memo 491, Twente Univ. of Technology, 1984.

    Google Scholar 

  14. A.J. van der Schaft, Conservation laws and symmetries for Hamiltonian systems with inputs, pp 1583–1586 in Proc. 23rd CDC, Las Vegas, December 1984.

    Google Scholar 

  15. A.J. van der Schaft, On feedback control of Hamiltonian systems, to appear in: Proceedings MTNS Conference, Stockholm, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

van der Schaft, A.J. (1986). Optimal Control and Hamiltonian Input-Output Systems. In: Fliess, M., Hazewinkel, M. (eds) Algebraic and Geometric Methods in Nonlinear Control Theory. Mathematics and Its Applications, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4706-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4706-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8593-9

  • Online ISBN: 978-94-009-4706-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics