Advertisement

Fuzzy Set Theory and Mathematical Programming

  • H.-J. Zimmermann
Part of the NATO ASI Series book series (ASIC, volume 177)

Abstract

Mathematical programming is one of the areas to which fuzzy set theory has been applied extensively. Primarily based on Bellman and Zadeh’s model of decision in fuzzy environments, models have been suggested which allow flexibility in constraints and fuzziness in the objective function in linear and nonlinear programming. This paper surveys major models and theories in this area and offers some indication on future developments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.A. Behringer, Lexicographic quasiconcave multiobjective programming, Z. Oper. Res. 21:103–116 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    F.A. Behringer, A simplex based algorithm for the lexicographically extended linear maxmin problem, European J. Oper. Res. 7: 274–283 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    R.E. Bellman and L.A. Zadeh; Decision-making in a fuzzy environment, Management Science 17: B141–164 (1970).MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Ghanas, The use of parametric programming in fuzzy linear programming, Fuzzy Sets and Systems 11: 243–251 (1983).CrossRefGoogle Scholar
  5. 5.
    L.L. Chang, Interpretation and execution of fuzzy programs, in (L.A. Zadeh et al., Eds.), 1975, pp. 191–218.Google Scholar
  6. 6.
    L. Fabian and M. Stoica, Fuzzy integer programming, in (H.-J. Zimmermann et al., Eds.), 1984, pp. 123–132.Google Scholar
  7. 7.
    H. Hamacher, H. Leberling and H.-J. Zimmermann, Sensitivity analysis in fuzzy linear programming, Fuzzy Sets and Systems 1:269–281(1978)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    H. Hamacher, Über logische Aggregationen nicht binär expliziter Entscheidungskriterien, Frankfurt/Main, 1978.Google Scholar
  9. 9.
    E.L. Hannan, Linear progrmaming with multiple fuzzy goals, Fuzzy Sets and Systems 6:235–248(1981).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    H.W. Kuhn and A.W. Tucker, Nonlinear Programming, in Proceedings of 2nd Berkeley Symposium on mathematical Statistics and Probability (J. Neyman, Ed., 1951.Google Scholar
  11. 11.
    H. Leberling, On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy Sets and Systems 6: 105–118 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    H. Leberling, Entscheidungsfindung bei divergierenden Faktorinteressen und relaxierten Kapazitätsrestriktionen mittels eines unscharfen Lösungsansatzes, Z. Betriebs. Forsch. 35: 398–419 (1983).Google Scholar
  13. 13.
    M.K. Luhandjula, Linear programming under randomness and fuzziness, Fuzzy Sets and Systems 10: 45–55 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    M.K. Luhandjula, Fuzzy approaches for multiple objective linear fractional optimization, Fuzzy Sets and Systems 13:11–24 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    K. Nakamura, Some extension of fuzzy linear progrramming, Fuzzy Sets and Systems, to appearGoogle Scholar
  16. 16.
    S.A. Orlovski, On programming with fuzzy constraint sets, Kybernetes 6: 197–201 (1977).CrossRefGoogle Scholar
  17. 17.
    W. Ostasiewicz, A new approach to fuzzy programming, Fuzzy Sets and Systems 7: 139–152 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    W. Rödder and H.-J. Zimmermann, Analyse, Beschreibung und Optimierung von unscharf formulierten Problemen, Z. Oper. Res. 21: 1–18 (1977).zbMATHCrossRefGoogle Scholar
  19. 19.
    W. Rödder and H.-J. Zimmermann, Duality in fuzzy linear programming, in Extremal Methods and Systems Analyses (A.V. Fiacco and K.O. Kor-tanek, Eds.), New York, 1980, pp. 415–429.Google Scholar
  20. 20.
    P.A. Rubin and R. Narasimhan, Fuzzy goal programming with rested priorities, Fuzzy Sets and Systems 14: 115–130 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    H. Tanaka and K. Asai, Fuzzy linear programming problems with fuzzy numbers, Fuzzy Sets and Systems 13:1–10 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    K. Tanaka and M. Mizumoto, Fuzzy programs and their execution, in (L.A. Zadeh et al., Eds.), 1975, pp. 41–76.Google Scholar
  23. 23.
    H. Tanaka, T. Okuda, and K. Asai, on fuzzy mathematical programming, J. Cybern. 3:37–46 (1974).MathSciNetGoogle Scholar
  24. 24.
    U. Thole, H.-J. Zimmermann and P. Zysno: On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems 2: 167–180 (1979).zbMATHCrossRefGoogle Scholar
  25. 25.
    J.L. Verdegay, A dual approach to solve the fuzzy linear programming problem, Fuzzy Sets and Systems 14: 131–141 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    B. Werners, Interaktive Entscheidungsunterstützung durch ein flexibles mathematisches Programmierungssystem, München 1984.Google Scholar
  27. 27.
    L.A. Zadeh, On fuzzy algorithms, Memo ERL-M325, Univ. of California, Berkeley, 1972.Google Scholar
  28. 28.
    L.A. Zadeh, K.S. Fu, K. Tanaka, and M. Simura (Eds.), Fuzzy Sets and their Applications to Cognitive and Decision Processes, New York, 1975.Google Scholar
  29. 29.
    W.I. Zangwill, Nonlinear Programming, Prentice-Hall, 1969.Google Scholar
  30. 30.
    H.-J. Zimmermann, Description and optimization of fuzzy systems, Internat. J. Gen. Systems 2:209–215 (1976).zbMATHCrossRefGoogle Scholar
  31. 31.
    H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems 1:45–55 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    H.-J. Zimmermann and P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems:37–51 (1980).Google Scholar
  33. 33.
    H.-J. Zimmermann and P. Zysno, Decisions and evaluations by hierarchical aggregation of information, Fuzzy Sets and Systems 10:243–266 (1983).zbMATHCrossRefGoogle Scholar
  34. 34.
    H.-J. Zimmermann, L.A. Zadeh, and B.R. Gaines (Eds.) Fuzzy Sets and Decision Analysis, New York, 1984.Google Scholar
  35. 35.
    H.-J. Zimmermann: Fuzzy Set Theory — and its Applications, Kluwer Nijhoff Publ., Boston, Dordrecht, Lancaster, 1985.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • H.-J. Zimmermann
    • 1
  1. 1.Chair of Operations ResearchAachen Institute of TechnologyAachenGermany

Personalised recommendations