Radon-Nikodym Theorem for Fuzzy Set-Valued Measures*

  • D. A. Ralescu
Part of the NATO ASI Series book series (ASIC, volume 177)


We study fuzzy set-valued measures in a Banach space and their relationships with fuzzy random variables. This theory is motivated by the need for a rigorous framework for the problem of inexact measurement. Our main result is a theorem of the Radon-Nikodym type for a fuzzy measure which is absolutely continuous with respect to a probability measure. Our result extends corresponding results for vector measures and for set-valued measures.


Banach Space Vector Measure Fuzzy Measure Fuzzy Random Variable Borel Measurable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Artstein, Z. (1972). ‘Set-valued measures’. Trans. Math. Soc. 165, 103–125.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Artstein, Z. and Vitale, R. A. (1975). ‘A strong law of large numbers for random compact sets. Ann. Prob. 3, 879–882.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aumann, R. J. (1965). ‘Integrals of set-valued functions. J. Math. Analysis Applic. 12, 1–12.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Costé, A. (1975). ‘Sur les multimesures à valeurs fermées bornées d’un espace de Banach. C.R. Acad. Sci. Paris Sér. A 280, 567–570.zbMATHGoogle Scholar
  5. 5.
    Debreu, G. (1966). ‘Integration of correspondences’. Proa. Fifth Berkeley Symp. Math. Statist. Probability 2, 351–372, University of California Press.Google Scholar
  6. 6.
    Debreu, G. and Schmeidler, D. (1972). ‘The Radon-Nikodym derivative of a correspondence. Proa. Sixth Berkeley Symp. Math. Statist. Probability 2, 41–56, University of California Press.MathSciNetGoogle Scholar
  7. 7.
    Dempster, A. P. (1967). ‘Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Statist. 36, 325–339.MathSciNetCrossRefGoogle Scholar
  8. 8.
    DeRobertis, L. and Hartigan, J.A. (1981). ‘Bayesian inference using intervals of measures’. Ann. Statist. 9, 235–244.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dinculeanu, N. (1967). ‘Vector Measures’. Pergamon Press, New York. Google Scholar
  10. 10.
    Giné, E., Hahn, M. G., and Zinn, J. (1983). ‘Limit theorems for random sets: an application of probability in Banach Space results. Proa. Fourth Int. Conf. on Prob, in Banaeh Space, Oberwolfach, Springer Lecture Notes in Math. 990, 112–135.Google Scholar
  11. 11.
    Hiai, F. (1978). ‘Radon-Nikodym theorems for set-valued measures’. Multivariate Analysis 8, 96–118.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kendall, D. G. ( 1974). ‘Foundations of a theory of random sets’. In Stochastic Geometry (ed. E.F. Harding and D.G. Kendall), Wiley, New York.Google Scholar
  13. 13.
    Klement, E. P., Puri, M. L., and Ralescu, D. A. (1985). Limit theorems for fuzzy random variables. Technical report, Department of Mathematics, Indiana University.Google Scholar
  14. 14.
    Kruse, R. (1982). ‘The strong law of large numbers for fuzzy random variables’. Inform. Sci. 28, 233–241.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Matheron, G. (1975). ‘Random Sets and Integral Geometry’. Wiley, New York.zbMATHGoogle Scholar
  16. 16.
    Negoita, C. V. and Ralescu, D. A. (1975). ‘Applications of Fuzzy Sets to Systems Analysis. Wiley, New York.Google Scholar
  17. 17.
    Puri, M. L. and Ralescu, D. A. (1983). ‘Strong law of large numbers for Banach space valued random sets’. Ann. Probability 11, 222–224.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Puri, M. L. and Ralescu, D. A. (1983). ‘Strong law of large numbers with respect to a set-valued probability measure. Ann. Probability 11, 1051–1054.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Puri, M. L. and Ralescu, D. A. (1985). ‘Limit theorems for random compact sets in Banach space. Math. Proa. Comb. Phil. Soa. 97, 151–158.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Puri, M. L. and Ralescu, D. A. (1985). ‘The concept of normality for fuzzy random variables. To appear in Ann. Probability. Google Scholar
  21. 21.
    Puri, M. L. and Ralescu, D. A. (1985). ‘Fuzzy random variables’. To appear in J. Math. Analysis Applic. Google Scholar
  22. 22.
    Rieffel, M. A. (1968). ‘The Random-Nikodym theorem for the Bochner integral’. Trans. Amer. Math. Soa. 131, 466–487.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Sugeno, M. (1977). ‘Fuzzy measures and fuzzy integrals — a survey’ In Fuzzy Automata and Decision Processes (ed. M. M. Gupta, G. N. Saridis, and B. R. Gaines), North Holland, Amsterdam, 89–102.Google Scholar
  24. 24.
    Weil, W. (1982). ‘An application of the central limit theorem for Banach space-valued random variables to the theory of random sets’. Z. Wahrsch. Verw. Gebiete 60, 203–208.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zadeh, L. A. (1965). ‘Fuzzy sets’. Inf. and Control 8, 338–353.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • D. A. Ralescu
    • 1
  1. 1.Department of MathematicsUniversity of CincinnatiOhioUSA

Personalised recommendations