Fuzzy Subsets in Didactic Processes

  • A. Jones
Part of the NATO ASI Series book series (ASIC, volume 177)


As “Didactics” is based on a dialogue and given the inherent fuzziness of this, the theory of fuzzy subsets has found in education a field of application. From this point of view an “Informatic Educational System” may be constructed. The model, based on the theory of graphs considers the learner as a “Human Operator” whose fuzzy states are characterized by fuzzy measures. Some Entropy and Creativity Measures are given as examples. They are part of the parameters used for the management of the learners through the “Didactograph”.


Entropy Function Fuzzy Subset Tree Decomposition Fuzzy Relation Fuzzy Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brillouin L. La Science et la Theorie de l’Information. Masson et Cie (1959) pp. 147–156Google Scholar
  2. [2]
    Cools M., Peteau M. ‘STIM 5, Un Programme de Stimulation Inventive’ IMAGO-Discussion Paper 3, Louvain-La-Neuve, (1973).Google Scholar
  3. [3]
    Daumerie J., Vigneront A., Jones A. ‘Evaluations Floues, Entropie Mentale et Enseignement’. IMAGO Discussion Paper 400, Louvain-La-Neuve (1980).Google Scholar
  4. [4]
    De Luca and Termini S. ‘A Definition of Non-Probabilistic Entropy in the Setting of Fuzzy Sets Theory’. Information and Control (1972) vol 20 pp 301–312.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Gilbert Ch. ‘Sur la Mesure de Stratégies en Résolution de Problèmes’. IMAGO-Discussion Paper 402, Louvain-La-Neuve (1980).Google Scholar
  6. [6]
    Harnwell G. Principles of Electricity and Electromagnetisrn. Mc. Graw-Hill (1949) ch IX pp 298–331.Google Scholar
  7. [7]
    Kaufmann A. Introduction à la Combinatorique en vue des Applications. DUNOD (1968) pp 196–311.Google Scholar
  8. [8]
    Kaufmann A. Introduction à la Théorie des Sous-Ensembles Flous. Masson et Cie (1977) 4 pp 1–58 and pp 116-166.Google Scholar
  9. [9]
    Kaufmann A. Introduction à la Théorie des Sous-Ensembles Flous. Masson et Cie (1977) 4 PP 261–281.Google Scholar
  10. [10]
    Watanabe S. Knowing and Guessing. John Willey (1969) ch 1, ch 7.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • A. Jones
    • 1
  1. 1.Imago CentreLouvain-La-NeuveBelgium

Personalised recommendations