Advertisement

Mathematics and Fuzziness

  • R. Lowen
Part of the NATO ASI Series book series (ASIC, volume 177)

Abstract

The purpose of this work is to introduce the reader to two aspects of fuzzy sets and mathematics.

The logical aspect where we present some theories to wellfound fuzzy sets and its basic concepts as they are known now and secondly and most importantly, the analytical aspect where we introduce a new and more restricted theory of fuzziness.

Keywords

Fuzzy Number Approach Space Fuzzy Measure Fuzzy Point Separation Axiom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Alsina, E. Trillas, L. Valverde, ‘On some logical connectives for fuzzy set theory’, J. Math. Anal. Appl. 93, 15–26 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.M. Anthony, H. Sherwood, ‘Fuzzy groups redefined’, J. Math. Anal. Appl. 69, 124–130 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    G. Artico, R. Moresco, ‘Fuzzy proximities and totally bounded fuzzy uniformities’, J. Math. Anal. Appl. 99, 320–337 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Badard, ‘Fuzzy pretopological spaces and their representation’, J. Math. Anal. Appl. 81, 378–390 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R. Bellman, M. Giertz, ‘On the analytic formalism of the theory of of fuzzy sets’, Information Sci. 5, 149–156 (1973)MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.C. Bezdek, B. Spillman, R. Spillman, ‘A fuzzy relation space for group decision theory’, Fuzzy Sets and Systems 1, 255–263 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    J.C. Bezdek, B. Spillman, R. Spillman, ‘Fuzzy relational spaces for group decision theory: An application’, Fuzzy Sets and Systems 2, 5–14 (1979)zbMATHCrossRefGoogle Scholar
  8. [8]
    J.A. BÜLBÖL, ‘On connections between the countability properties of (X,w(T)) and (X,T)’, Fuzzy Sets and Systems 15, 91–98 (1985)MathSciNetCrossRefGoogle Scholar
  9. [9]
    L. Caire, U. Cerruti, ‘Fuzzy relational spaces and algebraic structures’, Rend. Sem. Mat. Univers. Politeoh. Torino 35, 443–461 (1976)MathSciNetGoogle Scholar
  10. [10]
    U. Cerruti, ‘The Stone-Cech compactification in the category of fuzzy topological spaces’, Fuzzy Sets and Systems 6, 197–204 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    U. Cerruti, ‘Completion of L-fuzzy relations’, J. Math. Anal. Appl. 94, 312–327 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    U. Cerruti, U. HÖhle, ‘Categorical foundations of probabilistic microgeometry’, preprintGoogle Scholar
  13. [13]
    J.L. Coulon, J. Coulon, ‘Fuzzy Boolean algebras’, J. Math. Anal. Appl. 99, 248–256 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    C. De Mitri, E. Pascali, ‘Characterization of fuzzy topologies from neigborhoods of fuzzy points’, J. Math. Anal. Appl. 93, 1–14 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    D. Dubois, H. Prade, ‘Operations on fuzzy numbers’, Internat. J. Systems Sci. 9(6), 613–626 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    M.A. Erceg, ‘Functions, equivalence relations, quotient spaces and subsets in fuzzy set theory’, Fuzzy Sets and Systems 3, 75–92 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    A.O. Esogbue, R.C. Elder, ‘Fuzzy Sets and the modelling of physician decision processes. Part I: the initial interview-information gathering session’, Fuzzy Sets and Systems 2, 279–292 (1979)zbMATHCrossRefGoogle Scholar
  18. [18]
    A.O. Esogbue, R.C. Eler, ‘Fuzzy Sets and the modelling of physician decision processes. Part II: Fuzzy diagnosis decision models’, Fuzzy Sets and Systems 3, 1–10 (1980)zbMATHCrossRefGoogle Scholar
  19. [19]
    D.H. Foster, ‘Fuzzy topological groups’, J. Math. Anal. Appl. 67, 549–564 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M.J. Frank, ‘Probabilistic topological spaces’, J. Math. Anal. Appl. 34, 67–81 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    T.E. Gantner, R.C. Steinlage, R.H. Warren, ‘Compactness in fuzzy topological spaces’, J. Math. Anal. Appl. 62, 547–562 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    R. Goetschel Jr., W. Voxman, ‘A pseudometric for fuzzy sets and certain related results’, J. Math. Anal. Appl. 81, 507–523 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    J.A. Goguen, ‘L-fuzzy sets’, J. Math. Anal. Appl. 18, 145–174 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    R. Goldblatt, Topoi, the categorical analysis of logic, North Holland Publishing CY (1979)Google Scholar
  25. [25]
    S. Gottwald, ‘Untersuchungen zur mehrwertigen Mengenlehre’, Parts I, II, II, Math. Nachr. 72, 297–303 (1976); 74, 329-336 (1976); 79, 207-217 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    D. Higgs, ‘A category approach to Boolean valued set theory’, preprintGoogle Scholar
  27. [27]
    U. HÖhle,‘Probabilische Topologiën’, Manuscrip ta Math. 26, 223–245 (1978)Google Scholar
  28. [28]
    U. HÖhle, ‘Probabilistisch kompakte L-unscharfe mengen’, Manuscripta Math. 26, 331–347 (1979)zbMATHCrossRefGoogle Scholar
  29. [29]
    U. HÖhle, ‘Probabilistic uniformization of fuzzy topologies’, Fuzzy Sets and Systems 1, 311–332 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    U. HÖhle, ‘Upper semicontinuous fuzzy sets and applications’, J. Math. Anal. Appl. 78, 659–673 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    U. HÖhle, ‘Fuzzy topologies and topological space objects in a topos’, Busefal 21, 4–10 (1985)Google Scholar
  32. [32]
    B. Hutton, ‘Normality in fuzzy topological spaces’, J. Math. Anal. Appl. 50, 74–79 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    B. Hutton, ‘Uniformities on fuzzy topological spaces’, J. Math. Anal. Appl. 58, 559–571 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    B. Hutton, I. Reilly, ‘Separation axioms in fuzzy topological spaces’, Fuzzy Sets and Systems 3, 93–104 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    A.K. Katsaras, D.B. Liu, ‘Fuzzy vectorspaces and fuzzy topological spaces’, J. Math. Anal. Appl. 58, 135–146 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    A.K. Katsaras, ‘Ordered fuzzy topological spaces’, J. Math. Anal. Appl. 84, 44–58 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    A.K. Katsaras, ‘Fuzzy topological vectorspaces I’, Fuzzy Sets and Systems 6, 85–96 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    A.K. Katsaras, ‘Fuzzy topological vectorspaces II’, Fuzzy Sets and Systems 12, 143–154 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    A.K. Katsaras, ‘Linear fuzzy neighborhood spaces’, Fuzzy Sets and Systems 16, 25–40 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    A.J. Klein, ‘α-closure in fuzzy topology’, Rooky Mount. J. Math. 11, 553–560 (1981)zbMATHCrossRefGoogle Scholar
  41. [41]
    A.J. Klein, ‘Generating fuzzy topologies with semiclosure operations’, Fuzzy Sets and Systems 9, 267–274 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    A.J. Klein, ‘Generalizing the L-fuzzy unit interval’, Fuzzy Sets and Systems 12, 271–280 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    A.J. Klein, ‘Fuzzy topologies with specified level properties’, preprintGoogle Scholar
  44. [44]
    A.J. Klein, ‘When is a fuzzy topology topological ?’, preprintGoogle Scholar
  45. [45]
    E.P. Klement, ‘Fuzzy σ-algebras and fuzzy measurable functions’, Fuzzy Sets and Systems 4, 83–94 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    E.P. Klement, ‘Characterization of finite fuzzy measures using Markoff-kernels’, J. Math. Anal. Appl. 75, 330–339 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    E.P. Klement, R. LoWen, W. Schwyhla, ‘Fuzzy probability measures’, Fuzzy Sets and Systems 5, 21–30 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    E.P. Klement, W. Schwyhla, ‘Correspondence between fuzzy measures and classical measures’, Fuzzy Sets and Systems 7, 57–70 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    E.P. Klement, A theory of fuzzy measures: a survey, Fuzzy Information and Decision Processes, M.M. Gupta, E. Sanchez (eds.), North Holland Publishing CY (1982)Google Scholar
  50. [50]
    E.P. Klement, ‘Operations on fuzzy sets — an axiomatic approach’, Inf. Sci. 27, 221–232 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    E.P. Klement, ‘Some remarks on a paper by R.R. Yager’, Inf. Sci. 27, 211–220 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    E.P. Klement, ‘Construction of fuzzy σ-algebras using triangular norms’, J. Math. Anal. Appl. 85, 543–565 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    E.P. Klement, ‘Fuzzy measures assuming their values in the set of fuzzy numbers’, J. Math. Anal. Appl. 93, 312–323 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    E. Lowen, R. Lowen, ‘Characterization of convergence in fuzzy topological spaces’, Int. J. Math, and Math. Sci., in printGoogle Scholar
  55. [55]
    E. Lowen, R. Lowen, ‘On measures of compactness in fuzzy topological spaces’, J. Math. Anal. Appl., in printGoogle Scholar
  56. [56]
    R. Lowen, ‘On fuzzy complements’, Inf. Sci. 14, 107–113 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    R. Lowen, ‘Convergence in fuzzy topological spaces’, General Topology Appl. 10, 147–160 (1979)MathSciNetCrossRefGoogle Scholar
  58. [58]
    R. Lowen, ‘Convex fuzzy sets’, Fuzzy Sets and Systems 3, 291–310 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    R. Lowen, ‘Compact Hausdorff fuzzy topological spaces are topological’, Topology Appl. 12, 65–74 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    R. Lowen, ‘Fuzzy uniform spaces’, J. Math. Anal. Appl. 82, 370–385 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    R. Lowen, ‘Connectedness in fuzzy topological spaces’, Rooky Mt. J. Math. 11, 427–433 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    R. Lowen, ‘Fuzzy neighborhood spaces’, Fuzzy Sets and Systems 7, 165–189 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    R. Lowen, P. Wuyts, ‘On completeness, compactness and precompactness in fuzzy uniform spaces’, Part I, J. Math. Anal. Appl. 90, 563–581 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    R. Lowen, P. Wuyts, ‘On completeness, compactness and precompactness in fuzzy uniform spaces’, Part II, J. Math. Anal. Appl. 92, 342–371 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    R. Lowen, ‘Ix, the hyperspace of fuzzy sets, a natural non topological fuzzy topological space’, Trans. Amer. Math. Soo. 278, 547–564 (1983)MathSciNetzbMATHGoogle Scholar
  66. [66]
    R. Lowen, ‘Hyperspaces of fuzzy sets’, Fuzzy Sets and Systems 9, 287–311 (1983)MathSciNetCrossRefGoogle Scholar
  67. [67]
    R. Lowen, ‘On the existence of natural fuzzy topologies on spaces of probability measures’, Math. Nachr. 115, 33–57 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    R. Lowen, ‘Fuzzy convergence versus weak convergence in spaces of probability measures’, Abhandelungen Akad. Wiss. DDR 2, 147–152 (1984)MathSciNetGoogle Scholar
  69. [69]
    R. Lowen, ‘On the fundamentals of fuzzy sets’, Stochastica 8, 157–169 (1984)MathSciNetzbMATHGoogle Scholar
  70. [70]
    R. Lowen, ‘On the relation between fuzzy equalities, pseudometrics and uniformities’, Quaestiones Math. 7, 407–419 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    R. Lowen, ‘The order aspect of the fuzzy real line’, Manuscripta Math. 39, 293–309 (1985)MathSciNetCrossRefGoogle Scholar
  72. [72]
    R. Lowen, ‘Metric spaces viewed as fuzzy topological spaces induced by Lipschitz functions’, Math. Nachr. 120, 249–265 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    R. Lowen, P. Wuyts, ‘Concerning the constants in fuzzy topology’, J. Math. Anal. Appl., in printGoogle Scholar
  74. [74]
    R. Lowen, On the existence of natural non-topological fuzzy topological spaces, Research and Exposition in Mathematics 11, Heldermann Verlag (1985)Google Scholar
  75. [75]
    R. Lowen, ‘A complete characterization of the levelspaces of IR( I) and I(I), Rocky Mt. J. Math., in printGoogle Scholar
  76. [76]
    R. Lowen, ‘Mathematics and fuzziness: some personal reflections’, Inf. Sci., in printGoogle Scholar
  77. [77]
    R. Lowen, P. Maes, ‘Completeness in hyperspaces of compact fuzzy sets’, submitted for publicationGoogle Scholar
  78. [78]
    R. Lowen, ‘Approach spaces’, submitted for publicationGoogle Scholar
  79. [79]
    E.G. Manes, ‘Aclass of fuzzy theories’, J. Math. Anal. Appl. 85, 409–451 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    H.W. Martin, ‘A Stone-Cech ultra fuzzy compactification’, J. Math. Anal. Appl. 73, 453–456 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    H.W. Martin, ‘Weakly induced fuzzy topological spaces’, J. Math. Anal. Appl. 78, 634–639 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    S.V. Ovchinnikov, ‘Structure of fuzzy binary relations’, Fuzzy Sets and Systems 6, 169–197 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    H. PoincarÉ, Science and method, translated by F. Maitland, Dover publicationsGoogle Scholar
  84. [84]
    P-M. Pu, Y-M. Liu, ‘Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore Smith convergence’, J. Math. Anal. Appl. 76, 571–599 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    P-M. Pu, Y-M. Liu, ‘Fuzzy topology II. Product and quotient spaces’, J. Math. Anal. Appl. 77, 20–37 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    M.L. Puri, D.A. Ralescu, ‘Differentials of fuzzy functions’, J. Math. Anal. Appl. 91, 552–558 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    D.A. Ralescu, ‘Toward a general theory of fuzzy variables’, J. Math. Anal. Appl. 86, 176–193 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  88. [88]
    S.E. Rodabaugh, ‘Suitability in fuzzy topological spaces’, J. Math. Anal. Appl. 79, 273–285 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    S.E. Rodabaugh, The L-fuzzy real line and its subspaces, Recent developments in Fuzzy Set and Possibility Theory, Pergamon Press (1982)Google Scholar
  90. [90]
    S.E. Rodabaugh, ‘A categorical accomodation of various notions of fuzzy topology’, Fuzzy Sets and Systems 9, 241–266 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  91. [91]
    S.E. Rodabaugh, ‘A lattice of continuities for fuzzy topological spaces’, J. Math. Anal. Appl. 79, 244–255 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    S.E. Rodabaugh, ‘Fuzzy addition in the L-fuzzy real line’, Fuzzy Sets and Systems 8, 39–52 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    S.E. Rodabaugh, ‘Separation axioms and the fuzzy real line’, Fuzzy Sets and Systems, 163–154 (1984)Google Scholar
  94. [94]
    S.E. Rodabaugh, ‘Complete fuzzy topological hyperfields and fuzzy multiplication in the fuzzy real lines’, Fuzzy Sets and Systems 15, 285–310 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    R. Srivastava, S.N. Lal, A.K. Srivastava, ‘Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81, 497–506 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  96. [96]
    A.K. Srivastava, R. Srivastava, ‘Fuzzy Sierpinski Space: another note’, Fuzzy Mathematics 5, 99–104 (1985)MathSciNetzbMATHGoogle Scholar
  97. [97]
    E. Trillas, ‘Sobre funciones de Negación en la Téoría de Conjuntos Difusos’, Stochastica 3, 47–59 (1979)MathSciNetzbMATHGoogle Scholar
  98. [98]
    G-J. Wang, ‘A new fuzzy compactness defined by fuzzy nets’, J. Math. Anal. Appl. 94, 1–23 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  99. [99]
    R.H. Warren, ‘Fuzzy topologies characterized by neighborhood systems’, Rocky Mt. J. Math. 9(4), 761–764 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  100. [100]
    S. Weber, ‘A general concept of fuzzy connectives negations and implications based on t-norms and co-t-norms’, Fuzzy Sets and Systems 11, 115–134 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    S. Weber, ‘Measures of fuzzy sets and measure of fuzziness’, Fuzzy Sets and Systems 13, 247–272 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    M.D. Weiss, ‘Fixed points, separation and induced topologies for fuzzy sets’, J. Math. Anal. Appl. 50, 142–150 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  103. [103]
    P. Wuyts, R. Lowen, ‘On separation axioms in fuzzy topological spaces, fuzzy neighborhood spaces and fuzzy uniform spaces’, J. Math. Anal. Appl. 93, 27–41 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  104. [104]
    P. Wuyts, ‘On the determination of fuzzy topological spaces and fuzzy neighborhood spaces by their level topologies’, Fuzzy Sets and Systems 12, 71–85 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  105. [105]
    P. Wuyts, R. Lowen, ‘On local and global measures of separation in fuzzy topological spaces’, Fuzzy Sets and Systems, in printGoogle Scholar
  106. [106]
    L.A. Zadeh, ‘Fuzzy Sets’, Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  107. [107]
    L.A. Zadeh, ‘Fuzzy Sets as a basis for a theory of possibility’, Fuzzy Sets and Systems 1, 3–29 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  108. [108]
    L.A. Zadeh, Making computers think like people, I.E.E.E. Spectrum, August 1984Google Scholar
  109. [109]
    H.J. Zimmermann, ‘Description and optimization of fuzzy systems’, Int. J. General Syst. 2(4) (1975)Google Scholar
  110. [110]
    H.J. Zimmermann, ‘Fuzzy programming and linear programming with several objective functions’, Fuzzy Sets and Systems 1, 45–56 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • R. Lowen
    • 1
  1. 1.Dienst Wiskundige AnalyseUniversity of Antwerp R.U.C.A.AntwerpenBelgium

Personalised recommendations