Skip to main content

Remote Sensing Signatures of Whitecaps

  • Chapter
Oceanic Whitecaps

Part of the book series: Oceanographic Sciences Library ((OCSL,volume 2))

Abstract

In the solar spectral range, whitecaps are isotropic reflectors with a reflectance of about 55%. So even observation directions outside the sunglint, those often used for remote sensing, are affected by whitecaps. Due to the variation of the area and the reflectance of individual whitecaps with age, the optical effect of the whitecaps taken as the product of thepercentage areacovered with whitecaps and the spectral reflectance of dense foam must be reduced by an efficiency factor of about 0.4. Chlorophyll retrieval algorithms are not significantly affected by whitecaps, if they are based on radi- ance differences. Determination of the atmospheric turbidity using satellite measured radiances from cloud-free pixels over water is successful, but whitecaps are the most perturbing parameter. In the microwave region, the emissivity of whitecaps is higher than the emissivity of the water surface without foam. Therefore, thevariation of measured brightness temperatures which thus results from the alteration in the amount of whitecaps is used to determine the wind speed near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanchard, D. C. (1971). Whitecaps at sea. J. Atmos. Sci. 28, 645.

    Article  Google Scholar 

  • Cox, C. and W. Munk (1954). Statistics of the sea surface derived from sun glitter. J. Mar. Res. 13, 198–227.

    Google Scholar 

  • Droppleman, J. D. (1970). Apparent microwave emissivity of sea foam. J. Geophys. Res. 75, 696–698.

    Article  Google Scholar 

  • Edgerton, A. D. and D. T. Trexler (1969). Oceanographic application of remote sensing with passive microwave techniques. Proc. 6th Symp. on Remote Sensing, Univ. of Mich., 767–788.

    Google Scholar 

  • Gloersen, P., W. J. Campbell and D. Cavalieri (1981). Global maps of sea ice concentration, age and surface temperature derived from Nimbus-7 scanning multi-channel microwave radiometer data: A case study, in: Oceanography from Space (J. Gower, ed.), Plenum Press, New York, 777–783.

    Chapter  Google Scholar 

  • Gloersen, P. and F. T. Barath (1977). A scanning multichannel microwave radiometer for Nimbus-G and Seasat-A. IEEE J. Oceanic Eng., OE-2, 172–178.

    Google Scholar 

  • GOASEX Workshop Report (1979), SMMR panel report, Jet Propulsion Lab., Pasadena, CA

    Google Scholar 

  • Gordon, H. R. and M. M. Jacobs (1977). SMMR panel report, Jet Propulsion Lab., Pasadena, CAAlbedo of the ocean-atmosphere system: influence of sea foam xAppl. Opt. 16, 2257–2260.

    Google Scholar 

  • Gordon, H. R., D. K. Clark, J. L. Mueller and W. A. Hovis (1980). Phytoplankton pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparison with surface measurements. Science 210, 63–66.

    Article  Google Scholar 

  • Hasse, L. (1963). On the cooling of the sea surface by evaporation andheat exchange. Tellus 15, 363–366.

    Article  Google Scholar 

  • Hojerslev, N. K. (1981). Assessment of some suggested algorithms on sea colour and surface chlorophyll, in: Oceanography from Space (J. Gower, ed.), Plenum Press, New York, 347–3 53.

    Chapter  Google Scholar 

  • Irvine, W. M. and J. B. Pollack (1968). Infrared optical properties of water and ice spheres. Icarus 8, 324–360.

    Article  Google Scholar 

  • Kästner, M., P. Köpke and H. Quenzel (1983). Monitoring of Saharan dust over the Atlantic using Meteosat-VIS-data. Adv. Space Res. 2, 119–121.

    Article  Google Scholar 

  • Koepke, P. (1984). Effective reflectance of oceanic whitecaps. Appl. Opt. 23, 1816–1824.

    Article  Google Scholar 

  • Koepke, P. and H. Quenzel (1978). Water vapor: spectral transmission at wave-lengths between 0.7μm and 1μm. Appl. Opt. 17, 2114–2118.

    Article  Google Scholar 

  • Koepke, P. and H. Quenzel (1979). Turbidity of the atmosphere determined from satellite: Calculation of optimum viewing geometry. J. Geophys. Res. 84, 7846–7856.

    Article  Google Scholar 

  • Köpke, P. and H. Quenzel (1982). Most suitable conditions for aerosol monitoring from space. Adv. in Space Res. 2, 29–32.

    Article  Google Scholar 

  • Maul, G. A. and H. R. Gordon (1975). On the use of the Earth Resources Technology Satellite (LANDSAT-1) in oceanography. Rem. Sensing of Environment 4, 95–128.

    Article  Google Scholar 

  • Maul, G. A. (1981). Application of GOES visible-infrared data to quantifying mesoscale ocean surface temperatures, J. Geophys. Res. 86, 8007–8021.

    Article  Google Scholar 

  • McClain, E. P. (1981). Multiple atmospheric-window techniques for satellite-derived sea surface temperatures, in: Oceanography from Space (J. Gower, ed.), Plenum Press, New York, 73–85.

    Chapter  Google Scholar 

  • Miyake, Y. and T. Abe (1948). A study on the foaming of sea water. J. Marine Res. 7, 67–73.

    Google Scholar 

  • Monahan, E. C. (1971). Oceanic whitecaps. J. Phys. Oceanogr. 1, 139–144.

    Article  Google Scholar 

  • Monahan, E. C. and I. G. Ó Muircheartaigh (1980). Optimal Power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr. 10, 2094–2099.

    Article  Google Scholar 

  • Morel, A. (1980). In-water and remote measurements of ocean color. Bound.-Layer Met. 18, 177–201.

    Article  Google Scholar 

  • Njoku, E. G., J. M. Stacey, and F. T. Barath, (1980). The Seasat scanning multichannel microwave radiomete (SMMR): Instrument description and performance. IEEE J. Oc.Eng. OE-5, 100–115.

    Google Scholar 

  • Payne, R. E. (1972). Albedo of the sea surface. J. At-mos. Sci. 29, 959–970.

    Article  Google Scholar 

  • Plass, G. N., G. W. Kattawar and J. A. Guinn (1977). Isophotes of sunlight glitter on a wind-ruffled sea. Appl. Opt. 16, 643–653.

    Article  Google Scholar 

  • Quenzel, H. and M. Kaestner (1980). Optical properties of the atmosphere: calculated variability and application to satellite remote sensing of phytoplankton. Appl. Opt. 19, 1338–1344.

    Article  Google Scholar 

  • Ross, D. B. and V. Cardone (1974). Observations of oceanic whitecaps and their relation to remote measurements of surface wind speed. J. Geophys. Res. 79, 444–452.

    Article  Google Scholar 

  • Saunders, P. M. (1967). Shadowing on the ocean and the existence of the horizon. J. Geophys. Res. 72, 4643–4649.

    Article  Google Scholar 

  • Saunders, P. M. (1968). Radiance of sea and sky in the infrared window 800–1200 cm−1. J. Opt. Soc. America 58, 645–652.

    Article  Google Scholar 

  • Smith, W. L., P. K. Rao, R. Koffler and W. P. Curtis (1970). The determination of sea surface temperature from satellite high resolution infrared window radiation measurements. Month. Weather Rev. 98, 604–611.

    Article  Google Scholar 

  • Tassan, S. (1981). The influence of wind in the remote sensing of chlorophyll in the sea, in: Oceanography from Space (J. Gower, ed.), Plenum Press, New York, 371–375.

    Chapter  Google Scholar 

  • Toba, Y. and M. Chaen (1973). Quantitative expression of the breaking of wind waves on the sea surface. Records of oceanogr. works in Japan 12, 1–11.

    Google Scholar 

  • Wentz, F. J., E. J. Christensen and K. A. Richardson (1981). Dependence of sea-surface microwave emissi-vity on friction velocity as derived from SMMR/-SASS, in: Oceanography from Space (J. Gower, ed.), PlenumPress, New York, 741–749.

    Chapter  Google Scholar 

  • Whitlock, C. H., L. P. Poole, J. W. Usry, W. M. Houghton, W. G. Witte, W. D. Morris and E. A. Gurganus (1981). Comparison of reflectance with backscatter and absorption parameters for turbid waters. Appl. Opt. 20, 517–522.

    Article  Google Scholar 

  • Whitlock, L. H., D. S. Bartlett and E. A. Gurganus (1982). Sea foam reflectance and influence on optimum wavelength for remote sensing of ocean aerosols. Geophys. Res. Letters 9, 719–722.

    Article  Google Scholar 

  • Wilheit, T. T. and A. T. C. Chang (1979). An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer (SMMR), NASA Tech Memo, 80277, Goddard Space Flight Center.

    Google Scholar 

  • Williams, G. F., Jr. (1969). Microwave radiometry of the ocean and the possibility of marinewind velocity determination from satellite observations. J. Geophys. Res. 74, 4591–4594.

    Article  Google Scholar 

  • Wu, J. (1979). Oceanic whitecaps and sea state. J. Phys. Oceanogr. 9, 1064–1068.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Koepke, P. (1986). Remote Sensing Signatures of Whitecaps. In: Monahan, E.C., Niocaill, G.M. (eds) Oceanic Whitecaps. Oceanographic Sciences Library, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4668-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4668-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8575-5

  • Online ISBN: 978-94-009-4668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics