Advertisement

Carbon Deflagration Models for Type-I Supernovae and Theoretical Optical Spectra

  • Ken’ichi Nomoto
  • Friedrich-K. Thielemann
  • Koichi Yokoi
  • David Branch

Abstract

A carbon deflagration model in the accreting C + O white dwarf is presented as a plausible model for type-I supernovae (SN I). The evolution of the white dwarf is calculated from the beginning of accretion through complete disruption. The propagation of a carbon deflagration wave from center to the surface and associated nucleosynthesis are calculated. About 0.6 M 56Ni and substantial amounts of Ca, Ar, S, Si, Mg, and O are synthesized.

The synthetic spectrum at maximum light for this carbon deflagration model is calculated and compared to the observed spectrum of SN 1981b in NGC 4536 at maximum light. If the radial stratification of composition in the outer layers of the model is removed by mixing, the theoretical spectrum is in good agreement with the observed spectrum.

Keywords

Detonation Wave White Dwarf Synthetic Spectrum Maximum Light Carbon Burning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, W. D.: 1969, Astrophys. Space Sci. 5, 180.ADSCrossRefGoogle Scholar
  2. Arnett, W. D., Branch, D., Wheeler, J. C: 1985, Nature 314, 337.ADSCrossRefGoogle Scholar
  3. Axelrod, T. S.: 1980, in J. C. Wheeler (ed.), Type I Supernovae, University of Texas, Austin, p. 80.Google Scholar
  4. Branch, D.: 1984, in W. D. Arnett (ed.), Nucleosynthesis: Challenges and New Developments, University of Chicago Press, Chicago.Google Scholar
  5. Chevalier, R. A.: 1981, Astrophys. J. 246, 267.ADSCrossRefGoogle Scholar
  6. Muller, E., Arnett, W. D.: 1982, Astrophys. J. 261, L107.ADSGoogle Scholar
  7. Nomoto, K.: 1982a, Astrophys. J. 253, 798.ADSCrossRefGoogle Scholar
  8. Nomoto, K.: 1982b, Astrophys. J. 257, 780.ADSCrossRefGoogle Scholar
  9. Nomoto, K.: 1984, in C. Chiosi, A. Renzini (eds.), Stellar Nucleosynthesis, D. Reidel Publ. Co., Dordrecht, Holland, p. 205.Google Scholar
  10. Nomoto, K., Sugimoto, D., Neo, S.: 1976, Astrophys. Space Sci. 39, L37.ADSCrossRefGoogle Scholar
  11. Trimble, V.: 1982, Rev. Mod. Phys. 54, 1183.ADSCrossRefGoogle Scholar
  12. Unno, W.: 1967, Publ. Astron. Soc. Japan 19, 140.ADSGoogle Scholar
  13. Wheeler, J. C., Branch, D., Falk, S. W., Jr.: 1980, in J. C. Wheeler (ed.), Type-I Supernovae, Univ. of Texas, Austin, p. 199.Google Scholar
  14. Woosley, S. E., Axelrod, T. S., Weaver, T. A.: 1984, in C. Chiosi, A. Renzini (eds.), Stellar Nucleosynthesis, D. Reidel Publ. Co., Dordrecht, Holland, p. 263.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Ken’ichi Nomoto
    • 1
  • Friedrich-K. Thielemann
    • 2
  • Koichi Yokoi
    • 3
  • David Branch
    • 4
  1. 1.Dept of Earth Science and AstronomyUniversity of TokyoJapan
  2. 2.Max-Planck-Institut für Physik und AstrophysikInstitut für AstrophysikGarchingGermany
  3. 3.Institut für Kernphysik IIIKarlsruheGermany
  4. 4.Dept of Physics and AstronomyUniversity of OklahomaNormanUSA

Personalised recommendations