Skip to main content

Physiological States and Metabolic Phenotypes in Embryonic Development

  • Chapter
Cell and Tissue Culture in Forestry

Part of the book series: Forestry Sciences ((FOSC,volume 24-26))

Abstract

A goal for the mass clonal propagation of trees is to control the developmental process accurately and to regenerate trees with elite genes that are expressed in a true-to-type fashion. Achievement of this goal will contribute significantly to the exploitation of genetic variability in existing germplasm. Since we now have several examples of somatic embryogenesis (SE) in forest trees (Tulecke, Durzan, this volume) and a basic understanding of zygotic embryogenesis (e.g., 28, 29, 84, 97) we can expect the emergence of models for large scale clonal propagation. This includes the need for improved diagnostic reasoning and quality control for in vitro procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGEEN GI 1985 Theory for growth of plants derived from the nitrogen productivity concept. Physiol Plant 64: 17–28

    Google Scholar 

  2. ANDERSON NL, JP HOFMANN, A GEMMELL, J TAYLOR 1984 Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin Chem 30: 2031–2036

    PubMed  CAS  Google Scholar 

  3. ATKINSON DE 1977 Cellular Energy Metabolism and its Regulation, Academic Press, New York

    Google Scholar 

  4. BARO AM, R MIRANDA, J ALAMAN, N GARCIA, G BINNING, H ROHRER, C GERBER, JL CARRASCOSA 1985 Determination of surface topography of biological specimens at high resolution by scanning tunnelling microscopy. Nature 315: 253–254

    PubMed  CAS  Google Scholar 

  5. BEEVERS H 1974 Conceptual developments in metabolic control. Plant Physiol 54: 437–442

    PubMed  CAS  Google Scholar 

  6. BERLYN GP, YC BATTEY 1985 Metabolism and synthetic function of cambial tissue. In T Higuchi, ed. Biosynthesis and Biodegradation of Wood Components, Academic Press, New York, pp 63–88

    Google Scholar 

  7. BLUM H 1973 Biological shape and visual science. J Theor Biol 38: 205–287

    PubMed  CAS  Google Scholar 

  8. BRADLEY WH 1965 Vertical density currents. Science 150: 1423–1428

    PubMed  CAS  Google Scholar 

  9. BRILLOUIN L 1956 Science and Information Theory, Academic Press, New York

    Google Scholar 

  10. BROWN FA Jr 1959 The rhythmic nature of animals and plants. Am Sci 48: 147–168

    Google Scholar 

  11. BROWN CM 1984 Computer vision and natural constraints. Science 224: 1299–1304

    PubMed  CAS  Google Scholar 

  12. BUFFHAM BA 1985 Residence-time distributions in regions of steady-flow systems. Nature 314: 606–608

    CAS  Google Scholar 

  13. BUNGE M 1979 Treatise on Basic Philosphy. Vol. 4, Ontology II, A World of Systems. Reidel Publ Co, Dordrecht-Holland

    Google Scholar 

  14. BUNGE M 1960 Causality, chance, and laws. Am Sci 49: 432–448

    Google Scholar 

  15. CANNY MJ 1985 Ashby’s law and the pursuit of plant hormones: a critique of accepted dogmas, using the concept of variety. Aust J Plant Physiol 12: 1–7

    CAS  Google Scholar 

  16. CARLSON PS, BF CONRAD, JD LUTZ 1984 Sorting through the variability. HortScience 19: 388–392

    Google Scholar 

  17. CERUTTI PA 1985 Prooxidant states and tumor production. Science 227: 375–381

    PubMed  CAS  Google Scholar 

  18. CHALUPA V, DJ DURZAN, C VITHAYASAI 1976 Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 2. The quantitative analysis of the growth of callus from hypocotyls and radicles. Can J Bot 54: 446–455

    CAS  Google Scholar 

  19. CHENG DK 1983 Field and wave electromagnetics. Addison-Wesley Publ Co, Menlo Park, California

    Google Scholar 

  20. CHRISTIANSON ML 1985 An embryogénie culture of soybean: towards a general theory of somatic embryogenesis. In RH Henke, KW Hughes, MJ Constantin, A Hollaender, eds. Tissue Culture In Forestry and Agriculture. Plenum Press, New York, pp 83–103

    Google Scholar 

  21. CRANE JC, B IWAKIRI 1981 Morphology and reproduction of pistachio. Hort Rev 3: 376–393

    Google Scholar 

  22. CUNNINGHAM WJ 1963 The concept of stability. Am Sci 51: 425–436

    Google Scholar 

  23. DANDEKAR AM, D LERUDLIER, LT SMITH, MW JALCOWEC, LS GONG, RC VALENTINE 1983 Rhizobium as vectors for genetic engineering of salinity and drought tolerant legumes. In RB Goldberg, ed, Plant Molecular Biology. AR Liss, Inc, New York, 12: 277–289

    Google Scholar 

  24. DAVIS HT 1962 Introduction to nonlinear differential and integral equations. Dover Publ, New York

    Google Scholar 

  25. DEAN ACR, G SIR HINSHELWDOD 1966 Growth, Function and Regulation in Bacterial Cells. Oxford Univ Press

    Google Scholar 

  26. DEMDNGEOT J, E GOLÈS, M TCHUENTE 1985 Dynamic Systems and Cellular Automata. Academic Press, New York

    Google Scholar 

  27. DENDRICK RF 1960 Random processes in control and communications. Science 132: 865–870

    Google Scholar 

  28. DOGRA PD 1978 Morphology, development and nomenclature of conifer embryo. Phytomorphology 28: 307–322

    Google Scholar 

  29. DOGRA PD 1967 Seed sterility and disturbances in embryogeny in conifers with special reference to seed testing and tree breeding in Pinaceae. Stud For Suec (Stockholm), Vol 45, 99 pp

    Google Scholar 

  30. DURZAN DJ 1982 Nitrogen metabolism and vegetative propagation of forest trees. In JM Bonga and DJ Durzan, eds, Tissue Culture in Forestry, Martinus Nijhoff/Dr w Junk, The Hague, pp 256–324

    Google Scholar 

  31. DURZAN DJ 1984 Special problems: Adult vs. juvenile expiants. In WR Sharp, DA Evans, PV Ammirato and Y Yamada, eds, Handbook of Plant Cell Culture, Crop Species. MacMillan Publ Co, New York, Chap 17, 2: 471–503

    Google Scholar 

  32. DURZAN DJ 1984 Potential for genetic manipulation of forest trees: Toti-potency, somaclonal aberration, and trueness to type. In Proc Int Symp Recent Adv For Biotechnol, July 10-13, 1984, Michigan Biotechnol Inst, Traverse City, Michigan, pp 104–125

    Google Scholar 

  33. DURZAN DJ, V CHALUPA 1968 Free sugars, amino acids, and soluble proteins in the embryo and female gametophyte of jack pine as related to climate at the seed source. Can J Bot 46: 419–428

    Google Scholar 

  34. DURZAN DJ, V CHALUPA 1976 Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 3. Growth of cells in liquid suspension cultures in light and darkness. Can J Bot 54: 456–467

    Google Scholar 

  35. DURZAN DJ, V CHALUPA 1976 Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 4. Changes in amino acids of callus and in seedlings of similar genetic origin. Can J Bot 54: 468–482

    CAS  Google Scholar 

  36. DORZAN DJ, V CHALUPA 1976c Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 5. Changes in free arginine and Sakaguchi-reactive compounds during callus growth and in germinating seedlings of similar genetic origin. Can J Bot 54: 483–495

    Google Scholar 

  37. DURZAN DJ, V CHALUPA, AJ MIA 1976 Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 1. The establishment and some characteristics of a proliferated callus from jack pine seedlings. Can J Bot 54: 437–445

    CAS  Google Scholar 

  38. DURZAN DJ and FC STEWARD 1983 Nitrogen metabolism. In FC Steward, ed, Plant Physiology, An Advanced Treatise, Academic Press, New York, VIII:55–265

    Google Scholar 

  39. DURZAN DJ, K URIU 1986 Metabolic networks in developing pistachio embryos (Pistacia vera cv. Kerman). In H.C. Slavkin, ed., Progress in developmental biology. Part A. Proc Int Soc Dev Biol. 10th Int Cong ISDB, Aug. 4-9, 1985, Los Angeles, CA, 199–202

    Google Scholar 

  40. ELSASSER WM 1958 The Physical Foundation of Biology. Pergamon Press, NY

    Google Scholar 

  41. ENGEL A, A MASSALZKI, H SCHINDLER, DL DORSET, JP ROSENBUSCH 1985 Porin channel triples merge into single outlets in Escherichia coli outer membranes. Nature 317: 643–645

    PubMed  CAS  Google Scholar 

  42. EVANS DA, WR SHARP, HP MEDINA-FILHO 1984 Somaclonal and gametoclonal variation. Am J Bot 71: 759–774

    Google Scholar 

  43. FLORES HE, ND YOUNG, AW GALSTON 1984 Polyamine metabolism and plant stress. In JL Key, T Kosuge, eds. Cellular and Molecular Biology of Plant Stress. Proc Arco/UCLA Symp, Keystone, Co., April 15-21. A.R. Liss, Inc., pp 93–114

    Google Scholar 

  44. FRIEDEN C 1970 Kinetic aspects of regulation of metabolic processes. J Biol Chem 245: 5788–5799

    PubMed  CAS  Google Scholar 

  45. GARNER WR 1970 Good patterns have few alternatives. Am Sci 58: 34–42

    PubMed  CAS  Google Scholar 

  46. GIOVANELLI J, SH MUDD, AH DATKO 1985 Quantitative analysis of pathways of methionine metabolism and their regulation of Lemna. Plant Physiol 78: 555–560

    PubMed  CAS  Google Scholar 

  47. GLANSDORFF P, I PRIGOGINE 1971 Thermodynamic Theory of Structure, Stability, and Fluctuations, J Wiley, New York

    Google Scholar 

  48. GOODWIN BC 1963 Temporal organization in cells. A Dynamic Theory of Cellular Control Processes. Academic Press, New York

    Google Scholar 

  49. GRANT V 1975 Genetics of Flowering Plants. Columbia Univ Press, New York

    Google Scholar 

  50. GORDON R 1966 On stochastic growth and form. Proc Nat Acad Sci USA 56: 1497–1504

    PubMed  CAS  Google Scholar 

  51. GREEN PB 1980 Organogenesis. A biophysical view. Annu Rev Plant Physiol 31: 51–82

    Google Scholar 

  52. GRIESBACH RJ 1984 An introduction to somatic cell genetics. HortScience 19: 367–371

    CAS  Google Scholar 

  53. GUPTA PK, DJ DURZAN 1985 Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4: 177–179

    CAS  Google Scholar 

  54. HAKMAN I, LC FOWKE, S VON ARNOLD, T ERICKSSON 1985 The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci Lett 38: 53–63.

    Google Scholar 

  55. HAMNER KC, A TAKIMOTO 1964 Circadian rhythms and plant photoperiodism. Am Nat 48: 295–322

    Google Scholar 

  56. HARE PE, PA ST JOHN, MH ENGEL 1985 Ion-exchange separation of amino acids. In GC Barrett, ed, Chemistry and Biochemistry of Amino Acids, Chapman and Hall, London, pp 415–425

    Google Scholar 

  57. HIGGINS J 1967 The theory of oscillating reactions. Ind Eng Chem 59: 19–62

    Google Scholar 

  58. HORNBERG C, EW WEILER 1984 High affinity binding sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 370: 321–324

    Google Scholar 

  59. INGESTAD T 1977 Nitrogen and plant growth, Maximum efficiency of nitrogen fertilizers, Ambio 6: 146–151

    CAS  Google Scholar 

  60. JEAN RV 1984 Mathematical Approach to Pattern and form in Plant Growth. J Wiley and Sons Inc, New York

    Google Scholar 

  61. JOHNSON EF 1962 Automatic process control. Science 135: 403–408

    PubMed  CAS  Google Scholar 

  62. KAUFFMAN SA 1969 Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22: 437–467

    PubMed  CAS  Google Scholar 

  63. KESTER DE 1983 The clone in horticulture. HortScience 18:831–837

    Google Scholar 

  64. KOIATA GM 1975 Cascading bifurcations: The mathematics of chaos. Science 189:984–985

    Google Scholar 

  65. KOVACH LD 1960 Life can be so nonlinear. Am Sci 48: 218–225

    Google Scholar 

  66. KRIMER DB, J VAN’T HOF 1983 Extrachromosomal DNA of pea (Pisum sativum root-tip cells replicates by strand displacement. Proc Nat Acad Sci USA 80: 1933–1937

    PubMed  CAS  Google Scholar 

  67. LIN TS, VS POLITO, JC CRANE 1984 Embryo development in ‘Kerman’ pistachio. HortScience 19: 105–106.

    Google Scholar 

  68. MACDONALD N 1983 Trees and Networks in Biological Models. J Wiley and Sons, New York

    Google Scholar 

  69. MACKAY AL 1985 Periodic minimal surfaces. Nature 314: 604–606

    CAS  Google Scholar 

  70. MAGASANIK B 1982 Genetic control of nitrogen assimilation in bacteria. Annu Rev Genetics 16: 135–168

    CAS  Google Scholar 

  71. MARKOWITZ D 1971 Collective modes and wave-like solutions to cellular control equations. J Theor Biol 31: 475–492

    PubMed  CAS  Google Scholar 

  72. MCCLINTOCK B 1967 The role of the nucleus. Genetic systems regulating gene expression during development. Dev Biol (suppl) 1: 84–112

    Google Scholar 

  73. MCCLINTOCK B 1984 The significance of responses of the genome to challenge. Science 226: 792–801

    PubMed  CAS  Google Scholar 

  74. NAMKOONG G 1979 Introduction to quantitative genetics in forestry. For Serv USDA, Washington DC, Tech Bull 1588

    Google Scholar 

  75. NETTER H 1969 Theoretical Biochemistry. Wiley-Interscience, New York

    Google Scholar 

  76. NORSTOG K 1982 Experimental embryology of gymnosperms. In BM Johri, ed, Experimental Embryology of Vascular Plants. Springer-Verlag, New York, pp 25–51

    Google Scholar 

  77. OLLIS DL, P BRICK, R AHMLIN, NG XUONG, TA STEITZ 1985 Structure of large fragment of Escherichia coli DNA polymerase-1 completed with dTMP. Nature 313: 762–766.

    PubMed  CAS  Google Scholar 

  78. PALADE G 1975 Intracellular aspects of the process of protein synthesis. Science 189: 347–358

    PubMed  CAS  Google Scholar 

  79. PENNING DE VRIES FWT, AHM BRUNSTING, HH VAN LAAR 1974 Products, requirements, and efficiency of biosynthesis: A quantitative approach. J Theor Biol 45: 339–377

    Google Scholar 

  80. PIATT JR 1961 Properties of large molecules that go beyond the properties of their chemical sub-groups. J Theor Biol 1: 342–358

    Google Scholar 

  81. POWLEDGE TM 1984 Biotechnology touches the forest. Bio/Technology 2: 763–772

    Google Scholar 

  82. PRIGOGINE I, R LEFEVER, A GOLDBETER, M HERSHKOWITZ-KADFMAN 1969 Symmetry breaking instabilities in biological systems. Nature 223: 913–916

    PubMed  CAS  Google Scholar 

  83. OUASTLER H 1959 Information theory of biological integration. Am Nat 93: 245–254

    Google Scholar 

  84. RAGHAVAN V 1983 Biochemistry of somatic embryogenesis. In DA Evans, WR Sharp, PV Ammirato, Y Yamada, eds, Handbook of Plant Cell Culture. McMillan, Vol 1, 655–671

    Google Scholar 

  85. RAISBECK G 1964 Information Theory. MIT Press, Cambridge, Mass

    Google Scholar 

  86. RASHEVBKY N 1960 Mathematical Biophysics. 3rd rev ed, Vols 1 and 2, Dover Publ, New York

    Google Scholar 

  87. REARDAN DT, CF MEARES, DA GOODWIN, M MCTIGUE, GS DAVID, MR STONE, JP LEUNG, RM BATHOLOMEW, JM FRINKE 1985 Antibodies against metal chelates. Nature 316: 265–268

    PubMed  CAS  Google Scholar 

  88. RICHARDS FJ 1969 The quantitative analyses of growth. In FC Steward, ed. Plant Physiology: An Advanced Treatise. Academic Press, New York, VA, 3–76

    Google Scholar 

  89. RIEGER R, A MICHAELIS, M GREEN 1976 Glossary of Genetics and Cytogenetics. Springer-Verlag, New York

    Google Scholar 

  90. ROSEN CA 1967 Pattern classification by adaptive machines. Science 156: 38–44

    PubMed  CAS  Google Scholar 

  91. ROME JS 1964 Environmental preconditioning, with special reference to forestry. Ecology 45: 399–403

    Google Scholar 

  92. RUSSELL ES 1930 The Interpretation of Develctnpent and Heredity. Oxford Univ Press, Oxford

    Google Scholar 

  93. SCHIMKE RT, B HAMKALO, A HILL, B MARIANI, R JOHNSON, S SHERWOOD, T TLSTY 1986 Dihydrofolate reductase gene amplification in somatic cells. Proc 10th Int Cong Soc Dev Biol, Los Angeles, CA, August 4-9 (1985) (in press)

    Google Scholar 

  94. SCOWCROFT WR 1984 Genetic variability in tissue culture: Impaction germplasm conservation and utilization. Int Board Plant Genet Res, Rome, pp 1–41

    Google Scholar 

  95. SHIGO AL 1985 Wounded forests, starving trees. J For 83: 668–673

    Google Scholar 

  96. SILEN RR 1982 Nitrogen, corn and forest genetics. The agricultural yield strategy—implications for Douglas-fir management. USDA For Serv Gen Tech Rep PNW-137

    Google Scholar 

  97. SINGH H 1978 Embryology of Gymnosperms. Enc Plant Physiol, Gebruder Borntraeger, Berlin

    Google Scholar 

  98. STEWARD FC 1963 Effect of environment on metabolic patterns. In L Evans, ed. Environmental Control of Plant Growth. Academic Press, New York, pp 195–214

    Google Scholar 

  99. STEWARD FC 1968 Growth and Organization in Plants. Addison-Wesley Publ. Co., Reading, Mass

    Google Scholar 

  100. STEWARD FC 1971 Plant physiology: The changing problems, the continuing quest. Annu Rev Plant Physiol 22: 1–22

    Google Scholar 

  101. SYNGE JL 1962 Water, waves and hydrons. Science 138: 13–16

    PubMed  CAS  Google Scholar 

  102. TABOR M 1984 Modern dynamics and classical analysis. Nature 310: 277–282

    Google Scholar 

  103. THOM R 1983 Mathematical Models and Morphogenesis. Halsed Press, Chichester, England

    Google Scholar 

  104. TREWAVAS AJ, R SEXTON, P KELLY 1984 Polarity, calcium and abscission: molecular bases for developmental plasticity in plants. J Embryol Exp Morphol 83(Suppl): 179–195

    PubMed  CAS  Google Scholar 

  105. TURCOTTE DL, RF SMALLEY Jr., SA SOLLA 1985 Collapse of loaded factal trees. Nature 333: 671–672

    Google Scholar 

  106. VEEN AH and A LINDENMAYER 1977 Diffusion mechanism for phyllotaxis. Theoretical physico-chemical and computer study. Plant Physiol 60: 127–139

    PubMed  CAS  Google Scholar 

  107. VOLKENSHTEIN MV 1983 Biophysics. Transi A Beknazarov, Mir Publishers, Moscow

    Google Scholar 

  108. VON WEISSENBERG K 1976 Indirect selection for improvement of desired traits. In JP Miksche, ed, Modern Methods in Forest Genetics. Springer Verlag, New York, pp 217–228

    Google Scholar 

  109. WADDINGTON CH 1962 New Patterns in Genetics and Development. Columbia Univ Press, New York

    Google Scholar 

  110. WADDINGTON CH 1965 Autogenous cellular periodicities as (a) temporal templates and (b) the basis of morphogenetic fields. J Theor Biol 8: 367–369

    PubMed  CAS  Google Scholar 

  111. WATSON MR 1972 Rate effectors and their role in metabolic control. J Theor Biol 36: 195–202

    PubMed  CAS  Google Scholar 

  112. WEINBERG H and R COOPER 1972 The use of correlational analysis for pattern recognition. Nature 238: 292

    Google Scholar 

  113. WEISBUCH G 1985 Modelling natural systems with networks of automata: the search for generic behaviors. In J Demongeot E Golès M Tchuente, eds, Dynamic Systems and Cellular Automata. Academic Press, New York, pp 293–304

    Google Scholar 

  114. WHYTE RO 1949 Crop Production and Environment. Faber and Faber Ltd, London

    Google Scholar 

  115. WINFREE AT 1985 Organizing centres for chemical waves in two and three dimensins. In RJ Field, M Burger, ed, Oscillations and Travelling Waves in Chemical Systems. John Wiley, 441–472

    Google Scholar 

  116. WITHROW 1959 Photoperiodism and related phenomena in plants and animals. Am Assoc Adv Sci, Publ No 55, Washington, DC:, pp 439–471

    Google Scholar 

  117. WOLFRAM S 1984 Cellular automata as models of complexity. Nature 311: 419–424

    Google Scholar 

  118. WRIGHT S 1968 Evolution and the Genetics of Populations. Univ Chicago Press

    Google Scholar 

  119. YOUNG DA 1984 Advantages of separations on giant two-dimensional gels for detection of physiologically relevant changes in the expression of protein gene products. Clin Chem 30: 2104–2108

    PubMed  CAS  Google Scholar 

  120. ZELENY M 1977 Self-organization of living systems: A formal model of autopoiesis. Int J Genet Syst 4: 13–28

    Google Scholar 

  121. ZOBEL B, J TALBERT 1984 Applied Forest Tree Improvement. J Wiley, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Durzan, D.J. (1987). Physiological States and Metabolic Phenotypes in Embryonic Development. In: Bonga, J.M., Durzan, D.J. (eds) Cell and Tissue Culture in Forestry. Forestry Sciences, vol 24-26. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4484-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4484-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8497-0

  • Online ISBN: 978-94-009-4484-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics