Skip to main content

Role of Nucleation in Rapid Solidification

  • Chapter
Science and Technology of the Undercooled Melt

Part of the book series: Nato Asi Series ((NSSE,volume 114))

Abstract

During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstruetural development by controlling phase selection during nucleation and morphological evolution during crystal growth. When a liquid is dispersed into fine droplets, an effective isolation of the most potent nucleants allows for a deep undercooling in the range of 0.3-0.4 Tm before the onset of nucleation. Liquid undercooling behavior can be influenced by powder size refinement, size distribution characteristics and coating treatments. At high undercooling the nucleation of an equilibrium phase may be superseded by metastable product structures. In this case the use of metastable phase diagrams is important for the interpretation and prediction of solidification products such as supersaturated solutions, metastable intermediate phases and glasses. With known heterogeneous sites in droplets it has been possible to control nucleation and to identify specific pathways for metastable phase formation and microstruetural development. The operative reaction is determined by a competitive nucleation kinetics which can be modified at different undercooling levels by the effect of cooling rate. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in controlling nucleation during RSP structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen M, Kear B H and Mehrabian R, in Rapid Solidification Processing: Principles and Technologies II, eds. Mehrabian R, Kear B H and Cohen M (Claitor’s Pub., Baton Rouge, LA ) 1980,p 1.

    Google Scholar 

  2. Jones H, Mat. Sci. Eng.,1984, 65 145

    Google Scholar 

  3. Hombogen E, in Rapidly Quenched Metals V, eds. Steeb S and Warlimont H ( Elsevier, Amsterdam ) 1985, 785.

    Google Scholar 

  4. Jones H, Rapid Solidification of Metals and Alloys, Monograph #8, ( Institution of Metallurgists, London ) 1982.

    Google Scholar 

  5. Perepezko, J H, Shiohara Y, Paik J S and FLemings M C in Proc. 3rd Int. Conf. on Rapid Solidification Processing: Principles and Technologies, ed. Meharabian R, ( Nat.Bur.Stds., Washington, DC ), 1983, 28.

    Google Scholar 

  6. Perepezko J H and Paik J S, in Rapidly Soldified Amorphous and Crystalline Alloys, eds. Kear B H, Giessen B C and Cohen M, ( North Holland, Amsterdam ) 1982, 49.

    Google Scholar 

  7. Perepezko J H, Mat. Sci. Eng.,1984, 65, 125.

    Google Scholar 

  8. Boettinger W J and Perepezko J H, in Rapidly Solidified Crystalline Alloys, ed. Das S, Kear, B H and Adam, C M ( TMS-AIME, Warrendale,PA ) 1986, 21.

    Google Scholar 

  9. Blanke H and Köster U, in Rapidly Quenched Metals V, eds. Steeb S and Warlimont H ( Elsevier, Amsterdam ) 1985, 227.

    Google Scholar 

  10. Hornbogen E and Schmidt I, in Rapidly Soldified Amorphous and Crystalline Alloys, eds. Kear B H, Glessen B C and Cohen M, ( Elsevier, Amsterdam ) 1982, 199.

    Google Scholar 

  11. Drehmann A J and Turnbull D, Scripta Met., 1981, 15, 543.

    Google Scholar 

  12. Paik J S and Perepezko J H, J.Non-Cryst. Solids, 1983, 56 405.

    Google Scholar 

  13. Kelton K F, Greer A L and Thompson C V, J.Chem.Phys. 1983, 79 6261.

    Article  ADS  Google Scholar 

  14. Kelton K F and Greer A L, in Rapidly Quenched Metals V, eds. Steeb S and Warlimont H (Elsevier Amsterdam) 1985, 19 223.

    Google Scholar 

  15. Boettinger W J and Coriell S R, these proceedings.

    Google Scholar 

  16. Perepezko J H and Boettinger W J, Mat.Res. Soc. Symp.Proc., 1983, 19, 223.

    Article  Google Scholar 

  17. Tumbull D, J.Chem. Phys., 1952, 20,411.

    Google Scholar 

  18. Thompson C V, Greer A L and Spaepen F, Acta Met., 1983,31, 1883.

    Google Scholar 

  19. Köster U and Herold V, in Rapidly Quenched Metals IV, eds. Masumoto T and Suzuki K ( Japan Inst.Metals, Sendai ) 1982, 717.

    Google Scholar 

  20. Chen H S and Tumbull D, Acta Met. 1968,16 369.

    Google Scholar 

  21. Perepezko J H and Paik J S, J.Non-Cryst. Solids 1984,61, 113.

    Google Scholar 

  22. Thompson C V and Spaepen F, Acta Met. 1979,27, 1855.

    Google Scholar 

  23. Hillert M, Acta Met., 1953,1, 763.

    Google Scholar 

  24. Thompson C V and Spaepen F, Acta Met. 1983,31, 202.

    Google Scholar 

  25. Spaepen F, Acta Met., 1975,23, 729.

    Google Scholar 

  26. TUmbull D, J. Appl. Phys., 1950,21, 1022 (1950)

    Google Scholar 

  27. Skapski A S, Acta Met., 1956,4, 576.

    Google Scholar 

  28. Bonissent A, Finney J L and Mutaftschiev B, Phil.Mag. B,1985, 42, 223.

    Google Scholar 

  29. Waseda Y and Miller W A, Trans. JIM, 1978, 19 547.

    Google Scholar 

  30. Hirth J P, Met. Trans., 1978, 9A, 401.

    Google Scholar 

  31. Bosio L, Defrain A and Epelboin I, J.Phys. (Paris), 1966, 27, 61.

    Google Scholar 

  32. Pound G M and La Mer V K, J.Amer.Chem. Soc., 1952, 74, 23217

    Google Scholar 

  33. Perepezko J H and Smith J S, J.Non-Cryst. Solids,1981, 44, 65.

    Google Scholar 

  34. Glicksman M E and Void C L, Scripta Met., 1971, 5, 593.

    Google Scholar 

  35. Perepezko J H, LeBeau S E, Miller B A and HilHeman G J, in Rapidly Solidified Pcwder Aluminium Alloys, ASTM 1984, (in press).

    Google Scholar 

  36. Gech R E, J. Metals, 1956, 206 585.

    Google Scholar 

  37. Boettinger W J, Coriell S R and Sekerka R F, Mat.Sci. Eng.,1984,65, 27.

    Google Scholar 

  38. Massalski T B, in Proc.Fourth Int.Conf. on Rapidly Quenched Metals, eds. Masumoto T and Suzuki K ( Japan Inst.Metals, Sendai ), 1982, 203.

    Google Scholar 

  39. Boettinger W J, ibid. p. 99.

    Google Scholar 

  40. Baker J C and Cahn J W, in Soldification (ASM, Metals Park,OH),1971, 23.

    Google Scholar 

  41. Levi C G and Mehrabian R, Met. Trans. A, 1982, 3, 221.

    Google Scholar 

  42. Perepezko J H, Mueller B A, Richmond J J and Cooper K P, in Rapidly Quenched Metals V, eds. Steeb S and Warlimont H (Elsevier,Amsterdam), 1985, 43.

    Google Scholar 

  43. Borromee-Gautier C, Giessen B C and Grant N J, J.Chem.Phys., 1968,48, 1905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Perepezko, J.H. (1986). Role of Nucleation in Rapid Solidification. In: Sahm, P.R., Jones, H., Adam, C.M. (eds) Science and Technology of the Undercooled Melt. Nato Asi Series, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4456-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4456-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8483-3

  • Online ISBN: 978-94-009-4456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics