Skip to main content

Design Aspects of Industrial Fluidized Bed Reactors. Research Needs. Selected Subjects

  • Chapter
Chemical Reactor Design and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 110))

Summary

Part A gives general guidelines for the design of large commercial fluidized bed reactors with respect to the following aspects: (1) solids’ properties and their effect on the quality of fluidization; (2) bubble size control through small solid particle size or baffles; (3) particle recovery by means of cyclones; (4) heat transfer tubes; (5) solids circulation systems; (6) instrumentation, corrosion and erosion, mathematical models, pilot plants and scale-up techniques.

Part B presents a synthesis of the literature available on selected subjects of primary importance to the design of fluidized bed reactors. Correlations and models for the prediction of the minimum fluidization and bubbling conditions, the expansion and voidage of fluidized beds, the size and velocity of gas bubbles are thus presented. Correlations and models to characterize entrainment of solids from fluidized beds and to provide guidelines for the design of gas distributors are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kunii, D. and O. Levenspiel. “Fluidization Engineering”. John Wiley and Sons, New York, 1969.

    Google Scholar 

  2. Zenz, F.A, Othmer, D.F, “Fluidization and fluid-particle systems”. Reinhold Publishers, New York, 1960.

    Google Scholar 

  3. Briens, C., M.A. Bergougnou and C.G.J. Baker. “Leakage of Solids (Weeping, Dumping) at the grid of a 0.6m diameter gas fluidized bed”. Proceedings of the Second Engineering Foundation Conference on Fluidization. Cambridge University Press, Cambridge University, England, 1978, 32–37.

    Google Scholar 

  4. Behie, L.A, M.A. Bergougnou, C.G.J. Baker and T.E. Base. “Further studies on momentum of grid jets in a gas fluidized bed”. CJChE 49, (1971), 557–561.

    CAS  Google Scholar 

  5. Behie, L.A, M.A. Bergougnou and C.G.J. Baker (1975). “Heat Transfer from a grid jet in a large gas fluidized bed”, CJChE, 53, (1975) 25–30.

    Google Scholar 

  6. Behie, L.A, M.A. Bergougnou and C.G.J. Baker. “Mass Transfer from a grid jet in large gas fluidized bed”. Proceedings of the First Engineering Foundation Conference on Fluidization. Asilomar, California, U.S.A. 1, (1976) 261–278.

    Google Scholar 

  7. Mayer, I. and M.A. Bergougnou. “Apparatus for Fluidized Solid Systems”. U.S.P. 3,910,769, assigned to EXXON Research and Engineering Company, Linden, N.J., U.S.A.

    Google Scholar 

  8. Guigon, P., J.F. Large, M.A. Bergougnou and C.G.J. Baker. “Particle interchange through thin and thick baffle plates in multistage gas fluidized beds”. Proceedings of the Second Engineering Foundation Conference on Fluidization, Cambridge, England. Cambridge University Press (1978), 134–139.

    Google Scholar 

  9. Newby, R.A, S. Katta and D.L. Keairns. “Regeneration of Calcium based SO2 sorbents for fluidized bed combustion: engineering evaluation”. U.S.E.P.A. — 600/7-78-039. March, 1978, 48–63.

    Google Scholar 

  10. Matsen, J.M “Some characteristics of large circulation systems”. Proceedings of the First Engineering Foundation Fluidization Conference. Hemisphere Publishing Corporation, Washington, D.C. (1976), 135–139.

    Google Scholar 

  11. Grace, J.R and R. Clift, “On the two-phase theory of fluidization”, Chem. Eng. Sci., 29, (1974) 327–334.

    Article  CAS  Google Scholar 

  12. Rowe, P.N, Santoro, L., Yates, J.G, “The division of gas between bubble and interstitial phases in fluidized beds of fine powders”, Chem. Eng. Sci., 33 (1978) 133–140.

    Article  CAS  Google Scholar 

  13. Abrahamsen, A.R and Geldart D., “Behaviour of gas-fluidized beds of fine powders”, Powder Tech., 26, (1980) 47–55.

    Article  CAS  Google Scholar 

  14. Yates, J.G, “Fundamentals of Fluidized-bed Chemical Processes”, Butterworths, 1983.

    Google Scholar 

  15. Thonglimg, V., Hiquily, N., Laguerie, C., «Vitesse minimale de fluidisation et expansion des couches fluidisées par un gaz», Powder Technology, 38 (1984) 233–253.

    Article  Google Scholar 

  16. Leva, M., “Fluidization”, McGraw Hill, 1959.

    Google Scholar 

  17. Grewal, N.S and Saxena, S.C, “Comparison of commonly used correlations for minimum fluidization velocity of small solid particles”, Powder Techn., 26, (1980) 229–234.

    Article  CAS  Google Scholar 

  18. Ergun, S., “Fluid flow through packed columns”, Chem. Eng. Prog., 48, (1952) 89–94.

    CAS  Google Scholar 

  19. Richardson, J.F and St. Jeronimo, M.A, “Velocity-voidage relations for sedimentation and fluidization”, Chem. Eng. Sci., 34 (1979) 1419–1422.

    Article  CAS  Google Scholar 

  20. Wen, C.Y, Yu Y.H, “Mechanics of fluidization”, Chem. Eng. Prog. Symp. Series, 62, (1966) 100–111.

    CAS  Google Scholar 

  21. Botterill, J.S.M, “The effect of operating temperature on the velocity of minimum fluidization, bed voidage and general behaviour”, Powder Tech., 31, (1982) 101–110.

    Article  CAS  Google Scholar 

  22. Zenz, F.A, “State of the art review and report on critical aspects and scale-up considerations in the design of fluidized bed reactors”, Chapter 4, final report on phase 2 of contract number DE-AC 21-80 MC 14141, U.S. Department of Energy, 1982.

    Google Scholar 

  23. Chitester, D.C, Kornosky, R.M, Fan, L.S, Danko, J.P, “Characteristics of fluidization at high pressure”, Chem. Eng. Sci., 39, (1984) 253–261.

    Article  CAS  Google Scholar 

  24. Yamazaki, R., Hong, G.F, Jimbo, G., “The behavior of gas-solid fluidized bed at elevated temperature”, in “4th International Conference on Fluidization”, Tokyo, Kunii, D. and Toei, R. eds, Engineering Foundation, N.Y. 1983.

    Google Scholar 

  25. Geldart, D., “Types of gas fluidization”, Powder Tech., 7, (1973) 285–292.

    Article  CAS  Google Scholar 

  26. Chen, P., Pei, D.C.T, “Fluidization characteristics of fine particles”, Can. J. Chem. Eng., 62, (1984) 464–468.

    Article  CAS  Google Scholar 

  27. Vanacek, V., “Fluidized Bed Drying”, Leonard Hill, London, 1966.

    Google Scholar 

  28. Margiatto, C.A, Siegell, J.H, “Determination of porous particle density”, Powder Tech., 3, (1983) 105–106.

    Article  Google Scholar 

  29. Abrahamsen, A.R, Geldart, D., “Behaviour of Gas-fluidized beds of fine powders”, Powder Tech., 26, (1980) 35–46.

    Article  CAS  Google Scholar 

  30. Harriott, P., Simone, S., Chapter 3 in “Handbook of Fluids in Motion”, Cheremisinoff N.P, Gupta R eds., Ann Arbor Science, 1983.

    Google Scholar 

  31. Zenz, F.A, Othmer, D.F, “Fluidization and Fluid-Particle Systems”, Reinhold Publishing, 1960.

    Google Scholar 

  32. Geldart, D., Wong, A.C.Y, “Fluidization of powders showing degrees of cohesiveness”, Chem. Eng. Sci., 39, (1984) 1481–1484.

    Article  CAS  Google Scholar 

  33. Avidan, A.A, Yerushalmi, J, “Bed expansion in high velocity fluidization”, Powder Tech., 32., (1982) 223–232.

    Article  CAS  Google Scholar 

  34. Davidson, J.F, Harrison, D, “Fluidized Particles”, Cambridge University Press, 1963.

    Google Scholar 

  35. Corella, J., Bilbao, R, “The effect of variation of the gas volume and of the bubble size on the conversion in a fluidized bed”, Int. Chem. Eng., J24, (1984) 302–310.

    Google Scholar 

  36. Darton, R.C, “A bubble growth theory of fluidized bed reactors”, Trans. Inst. Chem. Engrs., 57, (1979) 134–138.

    CAS  Google Scholar 

  37. Grace, J.R, Chapter 8 in “Handbook of Multiphase Systems”, Hetsroni G. ed., Hemisphere Publishing Corporation, 1982.

    Google Scholar 

  38. Stewart, P.S.B, Davidson, J.F, “Slug flow in fluidized beds”, Powder Tech., 1, (1967) 61–80.

    Article  Google Scholar 

  39. Darton, R.C, Lanauze, R.D, Davidson, J.F, Harrison, D., “Bubble growth due to coalescence”, Trans. Inst. Chem. Eng., 55, (1977) 274–280.

    CAS  Google Scholar 

  40. Thiel, W.J, Potter, O.E, “Slugging in fluidized beds”, IEC Fund., 16 (1977) 242–247.

    Article  CAS  Google Scholar 

  41. Matsen, J.M, “Evidence of a maximum bubble size in a fluidized bed”, AIChE Symp. Ser. 69, No. 128 (1973) 30–33.

    CAS  Google Scholar 

  42. Harrison, D., Davidson, J.F, de Kock, J.W, “On the nature of aggregative and particulate fluidization”, Trans. Inst. Chem. Eng., 39, (1961) 202–211.

    CAS  Google Scholar 

  43. Guedes de Carvalho, J.F.R, Harrison, D., “Fluidization under pressure”, Inst, of Fuel Symp. Ser. No. 1 (1975) paper B1.

    Google Scholar 

  44. Yates, J.G, Cheesman, D.J, Mashingaidze, T.A, Howe, C, Jefferis, G, “The effect of vertical rods on bubbles in gas fluidized beds”, in “Fluidization” (Proc. 4th Int. Conf.), Tokyo, Kunii, D., Toei, R., eds., (1983) 103–110.

    Google Scholar 

  45. Loew, O, “Particle and bubble behaviour and velocities in a large-particle fluidized bed with immersed obstacles”, Powder Technology, 22, (1979) 45–57.

    Article  CAS  Google Scholar 

  46. Jin, Y., Yu, Z.Q, Zhang, L, “Pagoda-shaped internal baffles for fluidized bed reactors”, Int. Chem. Eng., 22, (1982) 269–279.

    Google Scholar 

  47. Gbordzoe, E, “Hydrodynamics of floating contactors in a fluidized bed”, M.E.Sc. thesis, Engineering Sc., University of Western Ontario, London, Canada, 1979.

    Google Scholar 

  48. Ismail, S., Chen, J.C, “Volume fraction of solids in the freeboard region of fluidized beds”, AIChE Symp. Ser. No. 234, 80, (1984) 114–118.

    CAS  Google Scholar 

  49. Zenz, F.A, “Particulate solids: the third phase in chemical engineering”, Chem. Eng., 90, No. 24, (1983) 61–67.

    CAS  Google Scholar 

  50. Wen, C.Y, and L.H. Chen, “Fluidized bed freeboard phenomena: entrainment and elutriation”, AIChE J., 12, (1982) 117–128.

    Article  Google Scholar 

  51. Zenz, F.A, and N.A. Weil, “A theoretical-empirical approach to the mechanism of particle entrainment from fluidized beds”, AIChE J., 4, (1958) 472–479.

    Article  CAS  Google Scholar 

  52. Briens, C., and M.A. Bergougnou, “New model for entrainment from fluidized beds” AIChE J. to be published (1985).

    Google Scholar 

  53. Gugnoni, R.J., and F.A. Zenz, “Particle entrainment from bubbling fluidized beds”, Grace J.R., Matsen, J.M. ed. Plenum Press, New York (1980) 501–508.

    Google Scholar 

  54. Large, J.F, Y. Martinie, and M.A. Bergougnou, “Interpretative model for entrainment in a large gas fluidized bed”, International Powder and Bulk Solids Handling and Processing Conference, May 1976.

    Google Scholar 

  55. Kunii, D., and O. Levenspiel, “Fluidization Engineering”, Krieger Publishing Co., New York, Chapter 10 (1977).

    Google Scholar 

  56. Morooka, S., K. Kawazuishi, and Y. Kato, “Holdup and flow pattern of solid particle in freeboard of gas-solid fluidized bed with fine particles”, Powder Technology, 26 (1980) 75–82.

    Article  CAS  Google Scholar 

  57. Pemberton, S.T, “Entrainment from fluidized beds”, Ph.D. Thesis, Trinity College, Cambridge, U.K. (1982).

    Google Scholar 

  58. Blake, T.R, Wen C.Y, Ku, C.A, “The correlation of jet penetration measurements in fluidized beds using nondimensional hydrodynamic parameters”, AIChE Symp. Ser. No. 234, 80 (1984) 42–51.

    CAS  Google Scholar 

  59. Geldart, D, “The expansion of bubbling fluidized beds”, Powder Tech., 1, (1968) 355–368.

    Article  Google Scholar 

  60. Fakhimi, S., Harrison, D, “Multi-orifice distributors in fluidized beds: a guide to design”, Chemeca 70, Session 1, Inst. Chem. Engrs., (1970) 29–46.

    Google Scholar 

  61. Whitehead, A.B, Dent, D.C.., “Behavior of multiple tuyere assemblies in large fluidized beds”, in “Proc. Int. Symp. on Fluidization”, Netherlands University Press (1967) 802–820.

    Google Scholar 

  62. Werther, J., Mblerus, O, “The local structure of gas fluidized beds, II” Int. J. Multiphase Flow, 1, (1974) 123–138.

    Article  Google Scholar 

  63. Whitehead, A.B, Dent, D.C, McAdam, J.C.H, “Fluidization studies in large gas-solid systems. Part V. Long and short term pressure instabilities”, Powder Tech., 18, (1977) 231–237.

    Article  Google Scholar 

  64. Briens, C., Bergougnou, M.A, Baker, C.G.J, “Grid leakage (weeping, dumping, particle backflow) in gas fluidized beds: the effect of bed height, grid thickness, wave breakers, cone-shaped grid holes and pressure drop fluctuations”, in “Fluidization”, Grace J.R., Matsen, J.M., eds. Plenum Press, New York, (1980) 423–420.

    Google Scholar 

  65. Tyagi, A, “Grid pressure drop and solid leakage in a large gas-solid fluidized bed”, M.E.Sc. thesis Engineering Science, The University of Western Ontario, London, Canada, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Bergougnou, M.A., Briens, C.L., Kunii, D. (1986). Design Aspects of Industrial Fluidized Bed Reactors. Research Needs. Selected Subjects. In: de Lasa, H.I. (eds) Chemical Reactor Design and Technology. NATO ASI Series, vol 110. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4400-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4400-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8457-4

  • Online ISBN: 978-94-009-4400-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics