Skip to main content

Abstract

The Griffith energy criterion for fracture [1, 2] states: crack growth can occur if the energy required to form an additional crack of size da can just be delivered by the system. The case of a plate with fixed ends was discussed in chapter 1. Due to the fixed ends the external load cannot do work. The energy required for crack growth must then be delivered as a release of elastic energy. If the ends of the plate are free to move during crack extension, work is done by the external load. In this case the elastic energy content of the plate increases instead of decreasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London A 221, (1921) pp. 163–197.

    Article  ADS  Google Scholar 

  2. Griffith, A. A., The theory of rupture, Proc. 1st Int. Congress Appl. Mech., (1924) pp. 55–63. Biezeno, Burgers Ed. Waltman (1925).

    Google Scholar 

  3. Irwin, G. R., Fracture, Handbuch der Physik VI, pp. 551–590, Flügge, Ed. Springer (1958).

    Google Scholar 

  4. Sanders, J. L., On the Griffith-Irwin fracture theory, ASME Trans 27 E, (1961) pp. 352–353.

    Google Scholar 

  5. Eshelby, J. D., Stress analysis of cracks, ISI publication, 121 (1968) pp. 13–48.

    Google Scholar 

  6. Irwin, G. R., Fracture dynamics, Fracturing of metals, pp. 147–166. ASM publ. (1948).

    Google Scholar 

  7. Orowan, E., Energy criteria of fracture, Welding Journal, 34 (1955) pp. 157s-160s.

    Google Scholar 

  8. Wnuk, M. P., Subcritical growth of fracture, Int. J. Fracture Mech., 7 (1971) pp. 383–407.

    Google Scholar 

  9. Raju, K. N., On the calculation of plastic energy dissipation rate during stable crack growth, Int. J. Fracture Mech., 5 (1969) pp. 101–112.

    Google Scholar 

  10. Broek, D., The residual strength of light alloy sheets containing fatigue cracks, Aerospace Proc. 1966, pp. 811–835, McMillan (1967).

    Google Scholar 

  11. Broek, D., The energy criterion for fracture of sheets containing cracks, Appl. Mat. Res., 4 (1965) pp. 188–189.

    Google Scholar 

  12. Krafft, J. M., Sullivan, A. M. and Boyle, R. W., Effect of dimensions on fast fracture instability of notched sheets, Proc. of the crack-propagation symposium I, pp. 8–28, Cranfield (1961).

    Google Scholar 

  13. Srawley, J. E. and Brown, W. F., Fracture toughness testing methods, ASTM STP 381, (1965) pp. 133–195.

    Google Scholar 

  14. Mostovoy, S., Crosley, P. B. and Ripling, E. J., Use of crack-line loaded specimens for measuring plane-strain fracture toughness, J. of Materials, 2 (1967) pp. 661–681.

    Google Scholar 

  15. Srawley, J. E., Jones, M. H. and Gross, B., Experimental determination of the dependence of crack extension force on crack length for a single-edge-notch tension specimen, NASA TN D-2396 (1964).

    Google Scholar 

  16. Schra, L., Boerema, P. J. and Van Leeuwen, H. P., Experimental determination of the dependence of compliance on crack tip configuration of a tapered DCB specimen, Nat. Aerospace Inst. Amsterdam, Rept TR 73025 (1973).

    Google Scholar 

  17. Ottens, H. H. and Lof, C. J., Finite element calculations of the compliance of a tapered DCB specimen for different crack configurations, Nat. Aerospace Inst. Amsterdam Rept. TR 72083 (1972).

    Google Scholar 

  18. Forman, R. G., Effect of plastic deformation on the strain energy release rate in a centrally notched plate subjected to uniaxial tension, ASME paper 65-WA/MET-9 (1965).

    Google Scholar 

  19. Eshelby, J. D., Calculation of energy release rate. In Prospects of Fracture Mechanics, pp. 69–84, Sih, Van Elst, Broek, Ed., Noordhoff (1974).

    Google Scholar 

  20. Knowles, J. K. and Sternberg, E., On a class of conservation laws in linearized and finite elastostatics, Arch. for Rational Mech. and Analysis, 44 (1972) pp. 187–211.

    MathSciNet  ADS  MATH  Google Scholar 

  21. Cherepanov, G. P., Crack propagation in continuous media. USSR, J. Appl. Math. and Mech. Translation 31 (1967) p. 504.

    ADS  Google Scholar 

  22. Rice, J. R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J. Appl. Mech., (1968) pp. 379–386.

    Google Scholar 

  23. Landes, J. D. and Begly, J. A., The effect of specimen geometry on J Ic, ASTM STP 514, (1972) pp. 24–39.

    Google Scholar 

  24. Begly, J. A. and Landes, J. D., The J-integral as a fracture criterion, ASTM STP 514, (1972) pp. 1–20.

    Google Scholar 

  25. Kobayashi, A. S., Chiu, S. T. and Beeuwkes, R. A., A numerical investigation on the use of the J-integral, Eng. Fract. Mech., 5 (1973) pp. 293–305.

    Article  Google Scholar 

  26. Paris, P. C., Tada, H., Zahoor, A., and Ernst, H., Instability of the Tearing model of elastic-plastic crack growth, ASTM STP 668, (1979) pp. 5–36.

    Google Scholar 

Further reading

  1. Swedlow, J. L., On Griffith’s theory of fracture, Int. J. Fracture Mech., 1 (1965) pp. 210–216.

    Google Scholar 

  2. Sih, G. C. and Liebowitz, H., On the Griffith energy criterion for brittle fracture, Int. J. Solids and Structures, 3 (1967) pp. 1–22.

    Article  Google Scholar 

  3. Willes, J. R., A comparison of the fracture criteria of Griffith and Barenblatt, J. Mech. Phys. Sol., 15 (1967) pp. 151–162.

    Article  ADS  Google Scholar 

  4. Williams, J. G. and Isherwood, D. P., Calculation of the strain energy release rate of cracked plates by an approximate method, J. Strain Analysis, 3 (1968) pp. 17–22.

    Article  Google Scholar 

  5. Glücklich, J. and Cohen, L. J., Strain energy and size effects in a brittle material, Mat. Res. and Stand., 8 (1968) pp. 17–22.

    Google Scholar 

  6. Rice, J. R. and Drucker, D. C., Energy changes in stressed bodies due to crack growth, Int. J. Fract. Mech., 3 (1967) pp. 19–27.

    Google Scholar 

  7. Havner, K. S. and Glassco, J. B., On energy balance criteria in ductile fracture, Int. J. Fract. Mech., 2 (1966) pp. 506–525.

    Article  Google Scholar 

  8. Broberg, K. B., Crack growth criteria and non-linear fracture mechanics, J. Mech. Phys. Sol., 19 (1971) pp. 407–418.

    Article  ADS  Google Scholar 

  9. Boyd, G. H., From Griffith to COD and beyond, Eng. Fract. Mech., 4 (1972) pp. 459–482.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). The energy principle. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics