Advertisement

Pulsatile Blood Flow Measurements with the Aid of 3-D Reconstructions From Dynamic Angiographic Recordings

Chapter

Abstract

Flow measurements in individual vessels may be of value in a variety of circumstances. 1.) Total organ flow can be derived from flow in a vessel when there is a single inflow artery or outflow vein in an organ. 2.) The commonest type of vascular disease is atherosclerosis, which tends to affect larger vessels. It may be advantageous to measure flow or change in flow in the diseased vessel (s), rather than attempt to measure tissue flow in its region of supply of the vessel, which may be spatially irregular and hard to define when using tissue flow measurement techniques. Furthermore, several arteries may potentially supply one territory and vessel flow measurement may allow estimation of the relative contribution of particular vessels. 3.) Similarly, measurement of flow in bypass grafts or natural anastomoses can be of particular clinical importance. 4.) Along an unbranched vessel (where volume flow must remain constant) velocity flow is inversely proportional to vessel cross sectional area. Moreover, blood flow velocity normally changes little at branches and large velocity changes often indicate abnormal haemodynamics. Thus, velocity flow (e.g. as provided semi-quantitatively by Doppler methods) may give valuable indirect information about vessel geometry.

Keywords

Cardiac Cycle Flow Measurement Blood Flow Velocity Pulsatile Flow Transport Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohme, W. Uber den activen anteil des herzens an der forderung des venenblutes. Ergebn Physiol 38: 251-338. Translation, eds. Colchester, A. & Palmer, J. 1980. Available from the RAF Library, Q4 Building, RAF Farnborough, Hants.Google Scholar
  2. Brown, B.G., Bolson, E.L. & DODGE H.T. (1982). Arteriographic assessment of coronary atherosclerosis. Arteriosclerosis 2: 2–15.PubMedCrossRefGoogle Scholar
  3. Bursch J.H., Ritman E.L., Wood, E.H. & Sturm, R.E. (1974). Roentgen videodensitometry. In Dye curves: The theory and practice of indicator dilution. Ed. Bloomfield, D.A. Univ Park Press pp 313–333.Google Scholar
  4. Bursch, J.H., Hahne H.J., Brennecke R., Hetzer, R. & Heintzen, P.H. (1979). Functional-angiograms derived from densitometric analysis of digitized x-ray picture series. Biomedical Engineering (Berlin) 24 (suppl), 189–90. (In German).Google Scholar
  5. Bursch J.H., Hahne, H.J., Brennecke, R., Gronemeier, D. & Heintzen P.H. (1981) Assessment of arterial blood flow, measurements by digital angiography. Radiology 141: 39–47.PubMedGoogle Scholar
  6. Busch, H.P. & Piroth, H.D. (1980). Clinical flow measurements with an automated general purpose video-densitometry system (unpublished).Google Scholar
  7. Colchester, A.C.F. & Brunt J.N.H. (1983). Measurement of vessel calibre and volume blood flow by dynamic quantitative digital angiography: an initial application showing variation of cerebral artery diameter with PaCO2. J Cereb B Flow Matabol 3: S640–641.Google Scholar
  8. Colchester, A.C.F. (1985). The Effect of Changing PaCO 2 on Cerebral Artery Calibre Estimated by a New Technique of Dynamic Quantitative Digital Angiography. PhD Thesis, University of London.Google Scholar
  9. Crepeau, R.L. & Silverman, N.R. (1973). Videodensitometric vascular flow rate measurement: some error considerations. Med Biol Engin 11: 319.CrossRefGoogle Scholar
  10. Duffield, R.G.M., Lewis, B., Miller, N.E., Jamieson, C.W., Brunt J.N.H., & Colchester, A.C.F. (1983). Treatment of hyper1ipidaemia retards progression of symptomatic femoral atherosclerosis. Lancet, I. 639–642.Google Scholar
  11. Forbes, G.S., Earnest, F., Kispert, D.B., Folger, W.N., 7 Sundt, T.M. (1982) “Digital angiography”: introducing digital techniques to clinical cerebral angiography practice. Mayo Clin Proc 57: 673–693.Google Scholar
  12. Hamby, R.I., Aintablian, A., Wisoff, B.G. & Hartstein, M.L. (1977). Comparative study of the post-operative flow in the saphenous vein and internal manmary artery bypass grafts. Amer Heart J 93: 306–315.PubMedCrossRefGoogle Scholar
  13. Hawkes, D.J., Colchester, A.C.F., & Mol, C. (1985). The accurate 3-D reconstruction of the geometric configuration of vascular trees from x-ray recordings. In Physics & Engineering of Medical Imaging. Ed. Guzzardi, R. The Hague: Martinus Nijhoff. (In press).Google Scholar
  14. Heintzen, P.H. (1978). Review of research into and some aspects of the modern development of densitometry, particularly roentgen-video-computer techniques. Ann Radiol (Paris) 21, 343–348.Google Scholar
  15. Hilal, S.K. (1966). The determination of the blood flow by a radiographic technique. Amer J Roentgenol 96: 896–906.PubMedGoogle Scholar
  16. Hohne, K.H., Bohm, M., Erbe, W., Nicolae, G.C., & Pfeiffersonne, B. (1978). Computer angiography: A new tool for x-ray functional diagnostics. Med Prog Tectnol 6: 23–28.Google Scholar
  17. Kedem, D., Kedem, D., Smith, C.W., Denan, R.H., & Brill, A.B. (1978). Velocity distribution and blood flow measurements using videodensitometric methods. Invest Radiol 13: 46–56.PubMedCrossRefGoogle Scholar
  18. Korbuly, D.E. (1973). Determination of the pulsatile blood flow by a radiographic method. Invest Radiol 8: 255.PubMedCrossRefGoogle Scholar
  19. Kruger, R.A., Bateman, W., Liu, P.Y. & Nelson, J.A. (1983). Blood flow determination using recursive processing: a digital radiographic method. Radiology 149: 293–298.PubMedGoogle Scholar
  20. Lantz, B.M.T. (1975). Relative flow measured by Roentgen videodensitometry in hydrodynamic model. Acta Radiol Diagnosis 16: 503–519.Google Scholar
  21. Mackay, S.A., Potel, M.J., & Rubin, J.M. (1982). Graphics methods for tracking three-dimensional heart wall motion. Comput Biomed Res 15: 455–473.PubMedCrossRefGoogle Scholar
  22. Mol, C., Colchester, A.C.F., & Hawkes, D.J. (1985). Three dimensional reconstructions of vascular configurations from biplane angiography. Submitted to Brit J Radiol.Google Scholar
  23. Reiber, J.H.C., Slager, C.J., Schuurbiers, J.C.H., den Boer, A., Gerbrands, J. J., Troost, G.J., Scholts, B., Kooijman, & Serruys, P.W. (1983). Transfer functions of the x-ray-cine-video chain applied to digital processing of coronary cineangiograms. In Digital Imaging in Cardiovascular Radiology. Eds. Heintzen, P.H., & Brennecke, R.Google Scholar
  24. Rutishauser, W., Steiger, U., Simon, R., Harlander, W. & Wellauer, J. (1974). Roentgendensitometry: an indicator-dilution technique for blood flow measurement after contrast medium injection. Biomed Engin 9: 472.Google Scholar
  25. Silverman, N.R., Intaglietta, M., & Tomkins, W.R. (1973). Television densitometer for blood flow measurement. Brit J Radiol 46: 594–598.PubMedCrossRefGoogle Scholar
  26. Silverman, N.R. & Rosen, L. (1977). Arterial blood flow measurement: assessment of velocity estimation methods. Invest Radiol 12: 319–324.PubMedCrossRefGoogle Scholar
  27. Smith, H.C., Sturm, R.E. & Wood, E.H. (1973). Videodensitometric system for measurement of vessel blood flow, particularly the coronary arteries in man. Amer J Cardiol 32: 144.PubMedCrossRefGoogle Scholar
  28. Spears, J.R., Sandor, T., Als, A.V., Malagold, M., Markis, J.E., Grossman, W., Sercjr, J.R. & Paulin, S. (1983). Computerised image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation 68: 453.PubMedCrossRefGoogle Scholar
  29. Thompson, H.K., Starmer, C.F., Whalen, R.E. & Mcintosh, H.D. (1964). Indicator transit time considered as a gamma variate. Circ Res 14: 502–515.PubMedGoogle Scholar
  30. Yerushalmi, S. & Itzchak, Y. (1976). Angiographic methods for blood flow measurements. Nad Prog Technol 4: 107–15.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1986

Authors and Affiliations

  1. 1.Department of NeurologyAtkinson Morley’s and St. George’s HospitalLondonEngland
  2. 2.Department of Medical PhysicsSt. George’s HospitalLondonEngland
  3. 3.Department of Medical BiophysicsManchester University Medical SchoolManchesterEngland
  4. 4.Institute of NeurologyQueen Square, LondonEngland

Personalised recommendations