Advertisement

Application of Information Processing Techniques to Ophthalmic Imaging

Chapter
  • 78 Downloads

Abstract

A digital fundus imaging system, based on a conventional fundus camera, and employing a charge-coupled device array is presented. The processing steps required to convert images formed from monochromatic light reflected from the back of the eye into quantitative maps of spectral reflectance are discussed. Three examples of the potential of spectral reflectance images to characterize patho-physiological processes are examined in the context of the early diagnosis of diabetic retinopathy, choroidal melanoma, and glaucoma respectively. Preliminary studies on the utility of shape analysis by invariant moments for characterization of the optic nerve in glaucoma, and texture analysis by the spatial gray-level dependency method for characterization of pigmented lesions are described. Finally, a new and simple technique for measurement of three-dimensional optic nerve topography is presented which promises to be much more accurate than existing photogrammetric or optical sectioning methods. Results of this technique on larger objects than the eye are shown and an error analysis for the optic nerve is derived.

Keywords

Optic Nerve Optic Nerve Head Spectral Reflectance Information Processing Technique Invariant Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wong D: Techniques of Fundus Photography. Kodak Topics in Biomedical Photography, Vol. M3-718, Eastman Kodak Company, 1976.Google Scholar
  2. 2.
    Kristian J. and Blouke M.: Charge-coupled devices in astronomy. Scientific American, pp 67–74, October 1982.Google Scholar
  3. 3.
    Millikan G.A.: A simple photoelectric colorimeter. J. Physiol. (London), 79: 152, 1933.Google Scholar
  4. 4.
    Zylstra W.G.: Fundamentals and applications of clinical oximeters. Royal van Gorcum, Assen (Netherlands ), 1953.Google Scholar
  5. 5.
    Wood E.H. and Geraci J.E.: Photoelectric determination of arterial oxygen saturation in man. J. Lab. Clin. Med., 34: 387–401, 1949.PubMedGoogle Scholar
  6. 6.
    Enson Y., Briscoe W.A., Polanyi M.L. and Cournaud A: In vivo studies with an intravascular and intracardiac reflection oximeter. J. Appl. Physiol., 17: 552–558, 1962.PubMedGoogle Scholar
  7. 7.
    Mook G.A., Osypka P., Sturm R.E. and Wood E.H.: Fibre optic reflection photometry on blood. Cardiovasc. Res., 2: 199–209, 1968.PubMedCrossRefGoogle Scholar
  8. 8.
    Sutterer W.F.: Optical artifacts in whole blood densitometry. Pediat. Res., 1: 66–75, 1967.CrossRefGoogle Scholar
  9. 9.
    Anselmo V.J. and Zawacki B.E.: Diagnosis of cutaneous thermal burn injuries by multispectral imaging analysis. Get Propulsion Laboratory Research Report, JPL 79–34, 1978.Google Scholar
  10. 10.
    Behrendt T. and Wilson L.A.: Spectral reflectance photography of the retina. Am. J. Ophthalmol., 59: 1079–1088, 1965.PubMedGoogle Scholar
  11. 11.
    Ducrey N.M., Delori F.C. and Gragoudas E.S.: Monochromatic ophthalmoscopy and fundus photography II: the pathological fundus. Arch. Ophthalmol. 97: 288–293, 1979.PubMedGoogle Scholar
  12. 12.
    Gloster J.: Fundus oximetry. Experimental Eye Research, 6:187–212, 1967.PubMedCrossRefGoogle Scholar
  13. 13.
    Cohen A.J. and Laing R.A.: Determination of retinal blood oxygen saturation from microdensitometer scans of ocular photographs. Photographic Science and Engineering, 20:31–35, 1976.Google Scholar
  14. 14.
    Delori F.C., Deupree D.M. and Weiter J.J.: Evaluation of the retinal vessel oximetry technique. Invest. Ophthalmol. Vis. Sci. 26(3) Suppl: 37, 1985Google Scholar
  15. 15.
    Drance S.M.: Is ischemia the villain in glaucomatous cupping and atrophy? Controversies in Ophthalmology, ed. Brockhurst R.J. et al., W.B. Saunders Co., pp292–300, 1977.Google Scholar
  16. 16.
    Maumenee A.E.: The pathogenesis of visual field loss in glaucoma. Controversies in Ophthalmolgy, ed. Brockhurst R.J. et al., W.B. Saunders Co., pp301–311, 1977.Google Scholar
  17. 17.
    Anderson D.R.: Is ischemia the villain in glaucomatous cupping and atrophy? Controversies in Ophthalmology, ed. Brockhurst R.J. et al., W.B. Saunders Co., pp312–319, 1977.Google Scholar
  18. 18.
    Schwartz B.: Cupping and pallor of the optic disc. Arch. Ophthalmol. 89: 272–277, 1973.PubMedGoogle Scholar
  19. 19.
    Zenker H-J, Mierdel P. and Marr E.: Quantitative evaluation of pallordisc ratio and colour of the optic disc by a photographic method. Graefe’s Archive for Clin, and Exp. Ophthalmol., 220: 184–186, 1983.CrossRefGoogle Scholar
  20. 20.
    Woernley D.L.: Infrared absorption curves for normal and neoplastic tissues and related biological substances. Cancer Res., 12:516–523, 1952.PubMedGoogle Scholar
  21. 21.
    Cawley E.P., Rathburn D. and Wheeler C.E.: Infrared spectroscopic studies of pigmented skin tumors. Arch, of Derm, and Syph., 70:748–753, 1954.Google Scholar
  22. 22.
    Packer S., Schneider K., Lin H-Z, and Feldman M.: Digital infrared fundus reflectance. Ophthalmol., 87: 534–542, 1980.Google Scholar
  23. 23.
    Huekamp B.: Die Infrarot-Photographie in der Differentialdiagnostik von Pigmentveranderungen des vorderenaugen Abschnittes. Ber. der Deutsch. Ophthalm. Ges., 59: 322–325, 1955.Google Scholar
  24. 24.
    Ernest J.T.: Color translation fundus photography. Am. J. Ophthalmol., 65: 170–174, 1968.PubMedGoogle Scholar
  25. 25.
    Dallow B.L.: Color infrared photography of the ocular fundus. Arch. Ophthalmol., 92: 254–258, 1974.PubMedGoogle Scholar
  26. 26.
    Denffer H.v. and Warth P.: Weitere Anwendungsmoglichkeiten der Infrarot-Falschfarben Fotographie in der Augenheilkunde. Klin. Mbl. Augenheilk., 171: 959–965, 1977.Google Scholar
  27. 27.
    Chen C.H. and Young G-K.: A study of texture classification using spectral features. Technical Report, SMU-EE-TR-82-1, Dept. of Electrical Engineering, Southeastern Massachusets University, North Dartmouth, MA, 1982.Google Scholar
  28. 28.
    Lim J.S. and Malik N.A.: A new algorithm for two-dimensional maximum entropy power spectral estimation. IEEE Trans, on Acoustics, Speech and Signal Processing, ASSP-29(3): 401–413, 1981.CrossRefGoogle Scholar
  29. 29.
    Wezka J. Dyer C. and Rosenfeld A.: A comparative study of texture measures for terrain classification. IEEE Trans. Systems, Man and Cybernetics, SMC-6(3): 204–222, 1980.Google Scholar
  30. 30.
    Conners R.W.: Towards a set of statistical features which measure visually perceivable qualities of texture. Proc. IEEE Conf. on Pattern Recognition and Image Processing pp. 382–390, Chicago, 1979.Google Scholar
  31. 31.
    Schwartz B. and Kern J.: Scanning microdensitometry of optic disk pallor in glaucoma. Arch. Ophthalmol., 95: 2159–2165, 1977.PubMedGoogle Scholar
  32. 32.
    Hu M-K.: Visual pattern recognition by moment invariants. IRE Trans. Inform. Theory, IT-8: 179–187, 1962.Google Scholar
  33. 33.
    Sadjadi F.A. and Hall E.L.: Numerical computations of moment invariants for scene analysis. Proc. IEEE Computer Soc. Conf. on Pattern Recognition and Image Processing, Catalog No. Ch1318-5/7/0000-0181, pp 181–187, 1978.Google Scholar
  34. 34.
    Maitra S.: Moment Invariants. Proc. IEEE, 67 (4): 697–699, 1979.CrossRefGoogle Scholar
  35. 35.
    Rowe R.W., Packer S., Rosen J. and Bizais V.: A charge-coupled device imaging system for examination of the ocular fundus. Proc. SPIE, 454: 65–71, 1984.Google Scholar
  36. 36.
    Rosenthal A.R., Falconer D.G., and Pieta I.: Photogrammetry experiments with a model eye. Brit. J. Ophthal., 64: 881–887, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    Allen L.: Ocular fundus photography. Am. J. Ophthalmol. 57: 13–28, 1968.Google Scholar
  38. 38.
    Schirmer K.E. and Kratky V.: Stereochronoscopy of the optic disk with stereoscopic cameras. Arch. Ophthalmol., 98: 1647, 1980.PubMedGoogle Scholar
  39. 39.
    Donaldson D., Prescott R., Kenedy S.: Simultaneous stereoscopic fundus camera utilizing a single optic axis. Invest. Ophthalmol. Vis. Sci. 19: 289, 1980.PubMedGoogle Scholar
  40. 40.
    Crock G.W.: Stereotechnology in medicine. Trans. Ophthal. Soc. U.K. XC: 577, 1970.Google Scholar
  41. 41.
    Saheb N.E., Drance S.M. and Nelson A.: The use of photogrammetry in evaluating the cup of the optic nervehead for a study in chronic simple glaucoma. Canad. J. Ophthal., 7: 466–470, 1972.PubMedGoogle Scholar
  42. 42.
    Rosenthal A.R.: Digital photogrammetry of the optic nerve head. Proc. SPIE Vol. 166, Applications of Human Biostereometrics (NATO), pp 255–262, 1978.Google Scholar
  43. 43.
    Schwartz B. and Takamoto T.: Biostereometrics in ophthalmology for measurement of the optic disc cup in glaucoma. Proc. SPIE Vol. 166, Applications of Human Biostereometrics (NATO), pp. 251–254, 1978.Google Scholar
  44. 44.
    Holm O. and Krakau C.E.T.: A photographic method for measuring the volume of papillary excavations. Annals of Ophthalmol., 1:328–332, 1970.Google Scholar
  45. 45.
    Krakau C.E.T. and Torlegard K.: Comparison between stereo and slit image photogrammetric measurements of the optic disc. Acta Ophthalmologica 50:863–871, 1970.CrossRefGoogle Scholar
  46. 46.
    Holm O.C., Becker B., Asseff C.F. and Podos S.M.: Volume of the optic disk cup. Am. J. Ophthalmol., 73(6): 876–881, 1972.PubMedGoogle Scholar
  47. 47.
    Shapiro J.M.: Contour photography of the optic nerve head: Stereometric basis. Proc. SPIE Vol. 361, Biostereometrics ’82, pp 322–323, 1982.Google Scholar
  48. 48.
    Shapiro J.M.: Topographic mapping of the ocular fundus by laser contour angiography: The man-machine interaction. Proc. SPIE Vol. 166, Applications of Human Biostereometrics (NATO), pp 255–262, 1978.Google Scholar
  49. 49.
    Nakatani H., Shimizu V., Kikkiwa A. and Suzuki N.: Moir topographic method for measuring the depth of papillary excavation. Documental Ophthalmol., pp. 135–140, W. Junk Publishers, The Hague, 1977.Google Scholar
  50. 50.
    Srinivasan V., Liu H.C. and Halioua M.: Automated phase-measuring profilometry of 3-D diffuse objects. Appl. Optics, 23(18): 3105–3108, 1984.CrossRefGoogle Scholar
  51. 51.
    Srinivasan V., Liu H.C. and Halioua M.: Automated phase-measuring profilometry: a phase mapping approach. Appl. Optics, 24(2): 185–188, 1985.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1986

Authors and Affiliations

  1. 1.North Shore University Hospital/Cornell UniversityManhassetUSA
  2. 2.New York Institute of TechnologyCenter for Optics, Lasers and Holography and NYCOMOld WestburyUSA

Personalised recommendations