Skip to main content

Mechanical Ventilation: The Role Of High-Frequency Ventilation

  • Chapter
Physiology of the Fetal and Neonatal Lung
  • 89 Accesses

Abstract

Mechanical ventilation of the lung has two functions: to produce cyclic volume exchange and to increase the mean lung volume. The volume exchange is primarily to eliminate CO2 by manipulating tidal volume and frequency. This function is a mechanical substitute for respiratory muscles which can’t or won’t perform their accustomed task. The second function, increasing mean lung volume, is an attempt to open up closed or flooded units to decrease shunt. To accomplish this the strategy is much less clear-cut. It can be achieved by altering peak pressure and rate as in the first function, but it can also be achieved by increasing end-expiratory pressure or reversing the I:E ratio. Here the ventilator is being used as a mechanical strut one of the real problems with mechanical ventilators is that these two j functions can become inextricably tangled so that the optimum setting for O2 exchange may not be the optimum setting for CO2. The unique advantage of high-frequency ventilation is that it separates these two functions; the ‘high frequency’ uses novel fluid dynamic principles to eliminate CO2 without cyclic volume exchange while oxygenation is controlled by continuous positive pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehr, J., Barkyoumb, J. and Drazen, J. (1981). Gas transport during high frequency ventilation. Fed. Proc., 40, 384

    Google Scholar 

  2. Schroter, R. C. and Sudlow, M. F. (1969). Flow patterns in models of human bronchial airways. Respir. Physiol., 7, 341–55

    Article  PubMed  CAS  Google Scholar 

  3. Hazelton, F. R. and Scherer, P. W. (1980). Bronchial bifurcations and respiratory mass transport. Science, 208, 69–71

    Article  Google Scholar 

  4. Fredberg, J. J. (1980). Augmented diffusion in airways can support pulmonary gas exchange. J. Appl. Physiol., 49, 232–8

    PubMed  CAS  Google Scholar 

  5. Chang, H. K. (1984). Mechanisms of gas transport during ventilation by high frequency oscillation. J. Appl. Physiol., 56, 553–63

    PubMed  CAS  Google Scholar 

  6. Watson, J. W. and Jackson, A. C. (1985). Frequency dependence of CO2 elimination and respiratory resistance in monkeys. J. Appl. Physiol., 58, 653–7

    Article  PubMed  CAS  Google Scholar 

  7. Kolton, M., Cattran, C. B., Kent, G., Yolgyesi, G., Froese, A. B. and Bryan, A. C. (1982). Oxygenation during high frequency ventilation compared to conventional mechanical ventilation in two models of lung injury. Anesth. Analg., 61, 323–32

    Article  PubMed  CAS  Google Scholar 

  8. Pesenti, A., Kolobow, T., Buckhold, D. K., Pierce, J. E., Huang, H. and Chen, V. (1982). Prevention of hyaline membrane disease in premature lambs by apneic oxygena¬tion and extracorporeal carbon dioxide removal. Intensive Care Med., 8, 11–7

    Article  PubMed  CAS  Google Scholar 

  9. Caldwell, E. J., Powell, R. D. and Mullooly, J. P. (1970). Intersitial emphysema: a study of physiologic factors involved in experimental induction of the lesion. Am. Rev. Respir. Dis., 102, 516–25

    PubMed  CAS  Google Scholar 

  10. Macklin, C. C. (1938). The site of air leakage from lung alveoli into the interstitial tissue during overinflation in the cat. Verk Anat., 85, 78–82

    Google Scholar 

  11. Takishima, T., Mead, J. and Leith, D. (1970). Stress distribution in lungs: a model of pul–monary elasticity. J. Appl. Physiol., 28, 596–608

    PubMed  Google Scholar 

  12. Stahlman, M., Lequire, V. S., Young, W. C., Merrill, R. E., Birmingham, R. T., Payne, G. A. and Gray, J. (1964). Pathophysiology of respiratory distress in the newborn. Am. J. Dis. Child., 108, 375–93

    PubMed  CAS  Google Scholar 

  13. Schwieler, G. and Robertson, B. (1976). Liquid ventilation in immature newborn rabbits. Biol. Neonate., 29, 343–53

    Article  PubMed  CAS  Google Scholar 

  14. Jobe, A., Ikegami, M., Jacobs, H., Jones, S. and Conway, D. (1983). Permeability of premature lamb lungs to protein and the effects of surfactant on that permeability. J. Appl. Physiol., 55, 169–76

    PubMed  CAS  Google Scholar 

  15. Merritt, A. T., Cochrane, C. G., Holcomb, K., Bohl, B., Hallman, M., Strayer, D., Edwards, D. E. and Gluck, L. (1983). Elastase and alpha–proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. J. Clin. Invest., 72, 656–66

    Article  PubMed  CAS  Google Scholar 

  16. Hamilton, P. P., Onayemi, A., Smyth, J. A., Gillan, J. E., Cutz, E., Froese, A. B. and Bryan, A. C. (1983). Comparison of conventional and high frequency ventilation: oxygenation and lung pathology. J. Appl. Physiol., 55, 131–8

    PubMed  CAS  Google Scholar 

  17. Solimano, A., Bryan, A.C., Jobe, A., Ikegami, M. and Jacobs, H. (1986). Effects of high frequency and conventional ventilation on premature lamb lung. J. Appl. Physiol., 59, 1571–7

    Google Scholar 

  18. Wohl, M. E., Stigol, L. C. and Mead, J. (1969). Resistance of the total respiratory system in healthy infants and infants with bronchiolitis. Pediatrics, 43, 495–509

    PubMed  CAS  Google Scholar 

  19. Dorkin, H. L., Stark, A. E., Warthammer, J. W., Strieder, D. J., Fredberg, J. J. and Frantz, I. (1983). Respiratory system impedance from 4 to 40 Hz in paralyzed intubated infants with respiratory disease. J. Clin. Invest., 72, 903–10

    Article  PubMed  CAS  Google Scholar 

  20. Man, G. C. W., Man, S. D. P. and Kappagoda, C. T. (1983). Effects of high frequency oscillatory ventilation on vagal and phrenic nerve activity. J. Appl. Physiol., 54, 502–7

    PubMed  CAS  Google Scholar 

  21. Wozniak, J. A., Davenport, P. W. and Koch, P. C. (1983). The response of pulmonary afferents to high frequency oscillation. Fed. Proc., 43, 106

    Google Scholar 

  22. Thompson, W. K., Marchak, B. E., Bryan, A. C. and Froese, A. B. (1981). Vagotomy reverses apnea induced by high frequency oscillatory ventilation. J. Appl. Physiol., 51, 1484–7

    PubMed  CAS  Google Scholar 

  23. England, S. J., Onayemi, A. and Bryan, A. C. (1984). Neuromusclar blockade enhances phrenic nerve activity during high frequency ventilation. J. Appl. Physiol., 56, 31–4

    PubMed  CAS  Google Scholar 

  24. England, S. J., Sullivan, C., Bowes, G., Onayemi, A. and Bryan, A. C. (1985). State related incidence of spontaneous breathing during high frequency ventilation. Respir. Physiol., 60, 357–64

    Article  PubMed  CAS  Google Scholar 

  25. Reynolds, E. O. R. (1971). Effects of alterations in mechanical ventilator settings on pul¬monary gas exchange in hyaline membrane disease. Arch. Dis. Child., 46, 152–9

    Article  PubMed  CAS  Google Scholar 

  26. Cournand, A., Motley, H. L., Werko, L. and Richards, D. W. (1948). Physiological studies on the effects of intermittent positive pressure breathing on cardiac output in man. Am. J. Physiol., 152, 162–74

    PubMed  CAS  Google Scholar 

  27. Zidulka, A. (1983). Ventilation by high–frequency chest wall compression in dogs with normal lungs. Am. Rev. Resp. Dis., 127, 709–13

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 MTP Press Limited

About this chapter

Cite this chapter

Bryan, A.C. (1987). Mechanical Ventilation: The Role Of High-Frequency Ventilation. In: Walters, D.V., Strang, L.B., Geubelle, F. (eds) Physiology of the Fetal and Neonatal Lung. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4155-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4155-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8344-7

  • Online ISBN: 978-94-009-4155-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics