Skip to main content

Surfactant Inhibitory Plasma-Derived Proteins

  • Chapter
Physiology of the Fetal and Neonatal Lung
  • 88 Accesses

Abstract

There are three potential mechanisms by which the alveolar surfactant system can be altered:

  1. 1.

    lack of surface-active material;

  2. 2.

    changes in the relative composition of its lipid or protein compounds;

  3. 3.

    inhibitory effect of a factor or factors leaked from the intravascular or interstitial space due to increased permeability of the capillary endothelial and/or alveolo-epithelial barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seeger, W., Wolf, H., Stahler, G., Neuhof, H. and Roka, L. (1982). Increased pulmonary vascular resistance and permeability due to arachidonate metabolism in isolated rabbit lungs. Prostaglandins, 23, 157–73

    Article  PubMed  CAS  Google Scholar 

  2. Seeger, W., Bauer, M. and Bhakdi, S. (1984). Staphylococcal alpha-toxin elicits hypertension in isolated rabbit lungs. Evidence for thromboxane formation and the role of extracellular calcium. J. Clin. Invest., 74, 849–58

    Article  PubMed  CAS  Google Scholar 

  3. Seeger, W., Wolf, H. R. D., Neuhof, H. and Roka, L. (1982). Release and oxygenation of arachidonic acid: nonspecific triggering and pathophysiological consequences in isolated rabbit lungs. In Samuelsson, B. et al. (eds.) Advances in Prostaglandin, Thromboxane and Leukotriene Research. Vol 12, pp. 99–105. ( New York: Raven Press )

    Google Scholar 

  4. Seeger, W., Radinger, H. and Neuhof, H. (1984). Increase in the capillary filtration coefficient of isolated rabbit lungs due to non-cyclooxygenase pathway of arachidonic acid (Abstract). Int. J. Microcirc. Clin. Exp., 3, 351

    Google Scholar 

  5. Seeger, W., Wolf, H. R. D., Stahler, G. and Neuhof, H. (1983). Alteration of pressure-volume characteristics due to different types of edema induction in isolated rabbit lungs. Respiration, 44, 273–81

    Article  PubMed  CAS  Google Scholar 

  6. Seeger, W., Stöhr, G., Wolf, H.R.D. and Neuhof, H. (1985). Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J. Appl. Physiol., 58, 326–38

    PubMed  CAS  Google Scholar 

  7. Seeger, W., Wolf, H., Bauer, M., Neuhof, H. and Roka, L. (1982). Comparative influence of LTC4, LTD4 and LTE4 on the pulmonary vaculature in isolated rabbit lungs. (Abstract). V. Int. Conf. Prostaglandins, Florence, May 1982, Abstract Book, p. 350

    Google Scholar 

  8. Lutz, F., Seeger, W., Schischke, B., Weiner, R. and Schramm, W. (1983). Effects of a cytotoxic protein from pseudomonas aeruginosa on phagocytic and pinocytic cells: in vitro and in vivo studies. Toxicon Suppl., 3, 257–60

    Article  Google Scholar 

  9. Clements, J. A., Hustead, R. F., Johnson, R. P. and Gribetz, I. (1961). Pulmonary surface tension and alveolar stability. J. Appl. Physiol., 16, 444–50

    PubMed  CAS  Google Scholar 

  10. Hildebran, J. N., Goerke, J. and Clements, J. A. Pulmonary surface film stability and composition. J. Appl. Physiol., 47, 604–11

    Google Scholar 

  11. Reifenrath, R. and Zimmerman, I. (1973). Surface tension properties of lung alveolar surfactant obtained by alveolar micropuncture. Respir. Physiol., 19, 369–93

    Article  PubMed  CAS  Google Scholar 

  12. Abrams, M. E. (1966). Isolation and quantitative estimation of pulmonary surface-active protein. J. Appl. Physiol., 21, 718–20

    PubMed  CAS  Google Scholar 

  13. Taylor, F. B. and Abrams, M. E. (1966). Effect of surface active lipoprotein on clotting and fibrinolysis, and of fibrinogen on surface tension of surface active lipoprotein. Am. J. Med., 40, 346–50

    Article  CAS  Google Scholar 

  14. Balis, J. U., Shelley, S. A., McCue, M. J. and Rappaport, E. S. (1971). Mechanisms of damage to the lung surfactant system. Exp. Mol. Pathol., 14, 243–62

    Article  PubMed  CAS  Google Scholar 

  15. Ikegami, M., Jobe, A. and Glatz, T. (1981). Surface activity following natural surfactant treatment in premature lambs. J. Appl. Physiol., 51, 306–12

    PubMed  CAS  Google Scholar 

  16. Jobe, A., Ikegami, M., Jacobs, H., Jones, S. and Conaway, D. (1983). Permeability of premature lambs to protein and the effect of surfactant on that permeability. J. Appl. Physiol., 55, 169–76

    PubMed  CAS  Google Scholar 

  17. Ikegami, M., Jobe, A., Jacobs, H. and Lam, R. (1984). A protein from airways of premature lambs that inhibits surfactant function. J. Appl. Physiol., 57, 1134–42

    PubMed  CAS  Google Scholar 

  18. Wasi, S., Burrowes, C. E., Hay, J. B. and Movat, H. Z. (1983). Plasminogen activator and plasminogen activity from sheep alveolar macrophages. Thrombos. Res., 30, 27–45

    Article  CAS  Google Scholar 

  19. Egan, E. A., Nelson, R. M. and Beale, E. F. (1980). Lung solute permeability and lung liquid absorption in premature ventilated fetal goats. Pediatr. Res., 14, 314–18

    Article  PubMed  CAS  Google Scholar 

  20. Ambrus, C. M., Choi, T. S., Cunnanan. E., Eisenberg, B., Staub, H. P., Weintraub, S. H., Couvey, N. G., Patterson, R. J., Jockin, H., Pickren, J. W., Bross, I. D., Jung, O. S. and Ambrus, J. L. (1977). Prevention of hyaline membrane disease with plasminogen. J. Am. Med. Assoc., 237, 1837–41

    Article  Google Scholar 

  21. Strang, L. B. (1976). The permeability of lung capillary and alveolar walls as deterxminants of liquid movements in the lung. In Porter, B. and O’Connor, M. (eds.) Ciba Foundation Symposium, Lung Liquids, pp. 49–58. ( Amsterdam and New York: Elsevier )

    Google Scholar 

  22. Hawgood, S., Benson, B. J. and Hamilton, R. L. (1985). Effects of a surfactant associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry, 24, 184–90

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 MTP Press Limited

About this chapter

Cite this chapter

Seeger, W., Stöhr, G., Neuhof, H. (1987). Surfactant Inhibitory Plasma-Derived Proteins. In: Walters, D.V., Strang, L.B., Geubelle, F. (eds) Physiology of the Fetal and Neonatal Lung. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4155-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4155-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8344-7

  • Online ISBN: 978-94-009-4155-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics