Stability and change through DNA repair



DNA is continually threatened by physical, chemical and biological factors which alter its structure, and so modify or block its biological activity. The role of DNA repair is to counter these changes. In conferring resistance to DNA damage, some repair systems simply remove DNA lesions, so regenerating the original DNA sequence. In other instances, lesions are not removed. Their effects are tolerated, or avoided, by recombination or changes in DNA replication, so that there is an intrinsic possibility of genetic rearrangement or sequence change as a result of repair. Thus, DNA repair mechanisms can be seen both as a means of maintaining DNA sequence and, on other occasions, as a source of variability or rearrangement.


Excision Repair Ataxia Telangiectasia Xeroderma Pigmentosum RecA Protein Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, A., Holloman, W. K. and Holliday, R. (1975) Nuclease that preferentially inactivates DNA containing mismatched bases. Nature, 258, 54–56.Google Scholar
  2. Ames, B. N. (1983) Dietary carcinogens and anticarcinogens. Science, 221, 1256–1264.Google Scholar
  3. Ashman, C. R. and Davidson, R. L. (1984) High spontaneous mutation frequency in shuttle vector sequences recovered from mammalian cellular DNA. Mol. Cell. Biol, 4, 2266–2272.Google Scholar
  4. Bacchetti, S. and Benne, R. (1975) Purification and characterization of an endonuclease from calf thymus acting on irradiated DNA. Biochim. Biophys. Acta, 390, 285–297.Google Scholar
  5. Baker, T. I. (1983) Inducible nucleotide excision repair in Neurospora. Mol Gen. Genet., 190, 295–299.Google Scholar
  6. Barker, D. G., White, J., Johnson, A. L. and Johnston, L. H. (1984) Structure and sequence of DNA ligase genes from S. cerevisiae (CDC9) and S. pombe (CDC17), and their induction by UV-irradiation. In Proceedings of XII International Conference on Yeast Genetics and Molecular Biology, Edinburgh.Google Scholar
  7. Barton, R. W. and Yang, W.-K. (1975) Low molecular weight DNA polymerase: decreased activity in spleens of old Balb/c mice. Mech. Ageing Dev., 4, 123–136.Google Scholar
  8. Baudet, A. L., Roufa, D.J. and Caskey, C. T. (1973) Mutations affecting the structure of hypoxanthine: guanine phosphoribosyltransferase in cultured Chinese hamster cells. Proc. Natl Acad. Sei. USA, 70, 320–324.Google Scholar
  9. Bauer, J., Krammer, G. and Knippers, R. (1981) Asymmetric repair of bacteriophage T7 heteroduplex DNA. Mol. Gen. Genet., 181, 541–547.Google Scholar
  10. Bishop, J. M. (1983) Cellular oncogenes and retroviruses. Ann. Rev. Biochem., 52, 301–354.Google Scholar
  11. Bogden, J. M., Eastman, A. and Bresnick, E. (1981) A system in mouse liver for the repair of O6-methyguanine lesions in methylated DNA. Nucl. Acids Res., 9, 3089– 3103.Google Scholar
  12. Boiteux, S. and Laval, J. (1982) Coding properties of poly (deoxycytidylic acid) templates containing uracil or apyrimidimic sites: In vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes. Biochemistry, 21, 6746–6751.Google Scholar
  13. Boiteux, S., Huisman, O. and Laval, J. (1984) 3-methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli. EMBO J., 3, 2569–2573.Google Scholar
  14. Boyd, J. B. and Shaw, K. E. S. (1982) Postreplication repair defects in mutants of Drosophilamelanogaster. Mol. Gen. Genet., 186, 289–294.Google Scholar
  15. Boyd, J. B., Harris, P. V., Presley, J. M. and Narachi, M. (1983) Drosophila melanogaster: A model eukaryote for the study of DNA repair. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges), Alan R. Liss Inc., New York, pp. 107–123.Google Scholar
  16. Boyd, J. B., Snyder, R. D., Harris, P. V., Presley, J. M., Boyd, S. F. and Smith, P. D. (1982) Identification of a second locus in Drosophila melanogaster required for excision repair. Genetics, 100, 239–257.Google Scholar
  17. Brandenburger, A., Godson, G. N., Radman, M., Glickman, B. W., van Sluis, C. A. and Doubleday, O. P. (1981) Radiation-induced base substitution mutagenesis in single-stranded DNA phage M13. Nature, 294, 180–182.Google Scholar
  18. Brash, D. E. and Haseltine, W. A. (1982) UV-induced mutation hotspots occur at DNA damage hotspots. Nature, 298, 189–192.Google Scholar
  19. Breimer, L. H. and Lindahl, T. (1980) A DNA glycosylase from Escherichia coli that releases free urea from polydeoxyribonucleotide containing fragments of base residues. Nucl. Acids Res., 8, 6199–6211.Google Scholar
  20. Breimer, L. H. and Lindahl, T. (1984) DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of Endonuclease III in Escherichia coli. J. Biol. Chem., 259, 5543–5548.Google Scholar
  21. Breimer, L. H. (1984) Enzymatic excision from -y-irradiated polydeoxyribonucleotides of adenine residues whose imidazole rings have been ruptured. Nucleic Acids Res., 12, 6359–6367.Google Scholar
  22. Brent, R. (1983a) Regulation of the E. coli SOS response by the lex A gene product. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 361–368.Google Scholar
  23. Brent, R. B. and Ptashne, M. (1980) The lexA gene product represses its own promotor. Proc. Natl Acad. Sei. USA, 77, 1932–1936.Google Scholar
  24. Brent, R. and Ptashne, M. (1981) Mechanism of action of the lexA gene product. Proc. Natl Acad. Sei. USA, 78, 4204–4208.Google Scholar
  25. Brent, T. P. (1983b) Properties of a human lymphoblast AP-endonuclease associated with activity for DNA damaged by ultraviolet light, X-rays, or osmium tetroxide. Biochemistry, 22, 4507–4512.Google Scholar
  26. Bresler, S. E. (1975) Theory of misrepair mutagenesis. Mutation Res., 29, 467–472.Google Scholar
  27. Bresler, S. E., Verbenko, V. N. and Kalinin, V. L. (1980) Mutants of Escherichia coli K-12 with enhanced resistance to ionizing radiation. I. Isolation and study of cross-resistance to various agents. Soviet Genetics, 16, 1094–1101.Google Scholar
  28. Bridges, B. A. and Woodgate, R. (1984) Mutagenic repair in Escherichia coli X. The umuC gene product may be required for replication past pyrimidine dimers but not for the coding error in UV-mutagenesis. Mol. Gen. Genet., 196, 364–366.Google Scholar
  29. Bridges, B. A. and Woodgate, R. (1985) Mutagenic repair in Escherichia coli. RecA and umuC,D gene products act at different steps in UV mutagenesis. Proc. Natl Acad. Sei. USA, 82, 4193–4197.Google Scholar
  30. Bridges, B. A., Law, J. and Munson, R. J. (1968) Mutagenesis in Escherichia coliII. Evidence for a common pathway for mutagenesis by ultraviolet light, ionizing radiation and thymine deprivation. Mol. Gen. Genet., 103, 266–273.Google Scholar
  31. Bridges, B. A., Mottershead, R. P. and Sedgwick, S. G. (1976) Mutagenic DNA repair in Escherichia coli III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Mol. Gen. Genet., 144, 53–58.Google Scholar
  32. Brunborg, G., Resnick, M. A. and Williamson, D. H. (1980) Cell-cycle - specific repair of DNA double-strand breaks in Saccharomyces cerevisiae. Radiation Res., 82, 547–558.Google Scholar
  33. Brunk, C. F. and Hanawalt, P. C. (1967) Repair of damaged DNA in a eucaryotic cell: Tetrahymena pyriformis. Science, 158, 663–664.Google Scholar
  34. Bruyninckx, W. J., Mason, H. S. and Morse, S. A. (1978) Are physiological oxygen concentrations mutagenic? Nature, 274, 606–607.Google Scholar
  35. Buhl, S.N., Setlow, R. B. and Regan, J. D. (1972) Steps in DNA chain elongation and joining after ultraviolet irradiation of human cells. Int. J. Radiat. Biol., 22, 417–424.Google Scholar
  36. Buhl, S. N., Setlow, R. B. and Regan, J. D. (1973) Recovery of the ability to synthesize DNA in segments of normal size at long times after ultraviolet irradiation of human cells. Biophys. J., 13, 1265–1275.Google Scholar
  37. Buhl, S. N., Setlow, R. B. and Regan, J. D. (1974) DNA repair in Potorous tridactylus. Biophys. J., 14, 791–S03.Google Scholar
  38. Caillet-Fauquet, P., Maenhaul-Michel, G. and Radman, M. (1984) SOS mutator effect in E. coli mutants deficient in mismatch correction. EMBO J., 3, 707–712.Google Scholar
  39. Calos, M. P., Lebkowski, J. S. and Boteham, M. R. (1983) High mutation frequency in DNA transfected into mammalian cells. Proc. Natl Acad. Sei. USA, 80, 3015–3019.Google Scholar
  40. Capecchi, M. R., von der Haar, R. A., Capecchi, N. E. and Sveda, M. M. (1977) The isolation of a suppressable nonsense mutant in mammalian cells. Cell, 12, 371–381.Google Scholar
  41. Chetsanga, C. J. and Lindahl, T. (1979) Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from Escherichia coli. Nucl. Acids Res., 6, 3673–3687.Google Scholar
  42. Ciarrocchi, G. and Linn, S. (1978) A cell-free assay measuring repair DNA synthesis in human fibroblasts. Proc. Natl Acad. Sei. USA, 75, 1887–1891.Google Scholar
  43. Ciesla, Z. (1982) Plasmid pKMIOl-mediated mutagenesis in Escherichia coli is cells. Mutation Res., 23, 107–112.Google Scholar
  44. Clarkson, J. R. and Painter, R. B. (1974) Repair of X-ray damage in ageing W1-38 cells. Mutation Res. , 218 652–656.Google Scholar
  45. Cleaver, J. E. (1968) Defective repair replication of DNA in Xeroderma Pigmentosum. Nature, 218, 652–656.Google Scholar
  46. Cleaver, J. E. and Bootsma, P. (1975) Xeroderma pigmentosum: Biochemical and genetic characteristics. Ann. Rev. Genet., 9, 19–38.Google Scholar
  47. Compere, S.J. and Palmiter, R. D. (1981) DNA methylation controls the inducibility of the mouse metallothionein-1 gene in lymphoid cells. Cell, 25, 233–240.Google Scholar
  48. Cooper, P. K. (1982) Characterization of long patch excision repair of DNA in ultraviolet-irradiated Escherichia coli: An inducible function under Rec-Lex control. Mol. Gen. Genet., 185, 189–197.Google Scholar
  49. Corry, P. M. and Cole, A. (1973) Double strand rejoining in mammalian DNA. Nature New Biology, 245, 100–101.Google Scholar
  50. Coulondre, C. and Miller, J. H. (1977) Genetic studies of the lac repressor. IV. Mutagenic specificity in the lac I gene of Escherichia coli. J. Mol. Biol., 117, 577–606.Google Scholar
  51. Coulondre, C., Miller, J.H., Farabaugh, P. and Gilbert, W. (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature, 274, 775–780.Google Scholar
  52. D’Ambrossio, S. M., Aebersold, P. M. and Setlow, R. B. (1978) Enhancement of postreplication repair in ultraviolet-light-irradiated Chinese hamster cells by irradiation in G2 or S-phase. Biophys. J., 23, 71–78.Google Scholar
  53. Dasgupta, U. B. and Summers, W. C. (1978) Ultraviolet reactivation of Herpes simplex virus is mutagenic and inducible in mammalian cells. Proc. Natl Acad. Sei. USA, 75, 2378–2381.Google Scholar
  54. Dasgupta, U. B. and Summers, W. C. (1980) Genetic recombination of Herpes simplex virus, the role of the host cell and UV-irradiation of the virus. Mol. Gen. Genet., 178, 617–623.Google Scholar
  55. Da vies, R. and Sinskey, A. J. (1973) Radiation-resistant mutants of Salmonella typhimurium LT2: Development and characterization. J. Bacteriol., 113, 133–144.Google Scholar
  56. Defais, M. (1983) Role of the E. coli umuC gene product in the repair of single- stranded DNA phage. Mol. Gen. Genet., 192, 509–511.Google Scholar
  57. Demple, B. and Haibrook, J. (1983) Inducible repair of oxidative DNA damage in Escherichia coli. Nature, 304, 466–468.Google Scholar
  58. Demple, B. and Linn, S. (1980) DNA N-glycosylases and UV repair. Nature, 287, 203–208.Google Scholar
  59. Demple, B., Haibrook, J. and Linn, S. (1983) Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J. Bacteriol., 153, 1079–1082.Google Scholar
  60. Dix, D. and Cohen, P. (1980) On the role of ageing in cancer incidence. J. Theor. Biol., 83, 163–173.Google Scholar
  61. Doerfler, W. (1983) DNA methylation and gene activity. Ann. Rev. Biochem., 52, 93–124.Google Scholar
  62. Doubleday, O. P., Bridges, B. A. and Green, M. H. L. (1975) Mutagenic DNA repair in Escherichia coli II. Factors affecting loss of photoreversibility of UV induced mutations. Mol. Gen. Genet., 140, 221–230.Google Scholar
  63. Drinkwater, N. R., Miller, E. C. and Miller, J. A. (1980) Estimation of apurinic/ apyrimidinic sites and phosphotriesters in deoxyribonucleic acid treated with electrophilic carcinogens and mutagens. Biochemistry, 19, 5087–5092.Google Scholar
  64. Dubbs, D. R., Rachmeler, M. and Kit., S. (1974) Recombination between temperature sensitive mutants of Simian Virus 40. Virology, 57, 161–174.Google Scholar
  65. Duncan, B. K. and Miller, J. H. (1980) Mutagenic deamination of cytosine residues in DNA. Nature, 287, 560–561.Google Scholar
  66. Echols, H. (1981) SOS functions, cancer and inducible evolution. Cell, 25, 1–2.Google Scholar
  67. Eckardt, F. and Haynes, R. H. (1977) Induction of pure and sectored mutant clones in excision proficient and deficient strains of yeast. Mutation Res., 43, 327–338.Google Scholar
  68. Eisenstadt, E., Warren, A. J., Porter, J., Atkins, P. and Miller, J. H. (1982) Carcinogenic epoxides of benzo (a) pyrene and cyclopenta (cd) pyrene induce base substitutions via specific transversions. Proc. Natl Acad. Sci. USA, 79, 1945–1949.Google Scholar
  69. Emery, H. S., Schild, D., Kellogg, D. E. and Mortimer, R. K. (1984) Studies of the structure and regulation of the yeast RAD54 and RAD52 genes. In Proceedings of the XII International Conference on Yeast Genetics and Molecular Biology, Edinburgh.Google Scholar
  70. England, P., Huberman, J., Jovin, T. M. and Komberg, A. (1969) Enzymicsynthesis of deoxyribonucleic acid - binding of triphosphates to deoxyribonucleic acid polymerase. J. Biol. Chem., 244, 3038–3044.Google Scholar
  71. Epstein, J., Williams, J. R. and Little, J. B. (1973) Deficient DNA repair in human progeroid cells. Proc. Natl Acad. Sci. USA, 70, 977–982.Google Scholar
  72. Epstein, J., Williams, J. R. and Little, J. B. (1974) Rate of DNA repair in progeric and normal human fibroblasts. Biochem. Biophys. Res. Commun., 59, 850–857.Google Scholar
  73. Epstein, J., Leyra, A., Kelley, W. N. and Littlefield, J. W. (1977) Mutagen-induced diploid human lymphoblast variants containing altered hypoxanthine-guanine phosphoribosyl transferase. Somatic Cell Genet., 3, 135–148.Google Scholar
  74. Erdman, I. E., Thatcher, F. S. and McQueen, K. F. (1961) Studies on the irradiation ot microorganisms in relation to food preservation II. Irradiation resistant mutants. Can. J. Microbiol, 7, 207–215.Google Scholar
  75. Erixon, K. and Ahnstrom, G. (1979) Single strand breaks in DNA during repair of UV induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography. Effects of hydroxyurea, 5–fluorodeoxyuridine and 1-β-D-arabinofuranosylcytosine on the kinetics of repair. Mutation Res., 59, 257–271.Google Scholar
  76. Evensen, G., and Seeberg, E. (1982) Adaptation to alkylation resistance involves the induction of DNA glycosylase. Nature, 296, 773–775.Google Scholar
  77. Fabre, F. and Roman, F. (1977) Genetic evidence for inducibility of recombination competence in yeast. Proc. Natl Acad. Sci. USA, 74, 1667–1671.Google Scholar
  78. Fenn, W. O., Gerschman, R., Gilbert, D. L., Terwilliger, D. E. and Cothran, F. V. (1957) Mutagenic effects of high oxygen tensions on Escherichia coli. Proc. Natl Acad. Sci. USA, 43, 1027–1032.Google Scholar
  79. Fenwick, R. G., Sawyer, T. H., Kruh, G. D., Astrin, K. H. and Caskey, C. T. (1977) Forward and reverse mutations affecting the kinetics and apparent molecular weight of mammalian HGPRT. Cell, 12, 383–391.Google Scholar
  80. Fersht, A. R. and Knill-Jones, J. W. (1983) Contribution of 3′→5′ exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J. Mol. Biol., 165, 669–682.Google Scholar
  81. Fincham, J. R. S. and Holliday, R. (1970) An explanation of fine structure map expansion in terms of excision repair. Mol. Gen. Genet., 109, 309–322.Google Scholar
  82. Fogel, S. and Mortimer, R. K. (1969) Informational transfer in meiotic gene conversion. Proc. Natl Acad. Sci. USA, 62, 96–103.Google Scholar
  83. Folger, K. M., Thomas, K. and Capecchi, M. R. (1985) Efficient correction of mismatched bases in plasmid heteroduplexes injected into cultured mammalian cell nucleii. Mol. Cell. Biol., 5, 70–74.Google Scholar
  84. Fonck, K., Barthel, R. and Bryant, P. E. (1984) Kinetics of recombinational hybrid formation in X-irradiated mammalian cells a possible first step in the repair of DNA double strand breaks. Mutation Res., 132, 113–118.Google Scholar
  85. Foote, R. S. and Mitra, S. (1984) Lack of induction of O 6-methyguanine-DNA methyltransferase in mammalian cells treated with Af-methyl-A/7-nitro-Af-nitro- soguanidine. Carcinogenesis, 5, 277–281.Google Scholar
  86. Fornace, A. J., Kohn, K. W. and Kam, H. E. (1976) DNA single strand breaks during repair of UV damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum. Proc. Natl Acad. Sei. USA, 73, 39–43.Google Scholar
  87. Foster, P. L., Eisenstadt, E. and Cairns, J. (1982) Random components of mutagenesis. Nature, 299, 305–367.Google Scholar
  88. Foster, P. L., Eisenstadt, E. and Miller, J. H. (1983) Base substitution mutations induced by metabolically activated anatoxins, B. Proc. Natl Acad. Sei. USA, 80, 2695–2698.Google Scholar
  89. Francis, A. A., Lee, W. H. and Regan, J. D. (1981) The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life span of mammals. Mech. Ageing Development, 16, 181–189.Google Scholar
  90. Franklin, W. A., Low, K. M. and Haseltine, W. A. (1982) Alkaline lability of novel fluorescent photoproducts produced in ultraviolet light irradiated DNA. J. Biol. Chem., 257, 13535–13543.Google Scholar
  91. Fujiwar a, Y. and Kano, Y. (1983) Characteristics of thymine dimer excision from xeroderma pigmentosum chromatin. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss, New York, pp. 215–224.Google Scholar
  92. Fujiwara, Y. and Tatsumi, M. (1977) Cross-link repair in human cells and its possible defect in Fanconi’s anemia cells. J. Mol. Biol., 113, 635–649.Google Scholar
  93. Ganesan, A. K. (1974) Persistence of pyrimidine dimers during post-replication repair in ultraviolet light-irradiated Escherichia coli. K12. J. Mol. Biol., 87, 103–119.Google Scholar
  94. Gentil, A., Margot, A. and Sarasin, A. (1983) Effect of UV-irradiation on genetic recombination of simian virus 40 mutants. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 385–396.Google Scholar
  95. Gentil, A., Margot, A. and Sarasin, A. (1984) Apurinic sites cause mutations in simian virus 40. Mutation Res., 129, 141–147.Google Scholar
  96. Glickman, B. W. and Ripley, L. S. (1984) Structural intermediates of deletion mutagenesis: A role for palindromic DNA. Proc. Natl Acad. Sei. USA, 81, 512–516.Google Scholar
  97. Goldstein, S. (1971) The role of DNA repair in ageing of cultured fibroblasts from xeroderma pigmentosum and normals. Proc. Soc. Exp. Biol. Med., 137, 730–734.Google Scholar
  98. Gonclaves, O., Drobetsky, E. and Meuth, M. (1984) Structural alterations of the aprt locus induced by deoxyribonucleoside triphosphate pool imbalances in Chinese hamster ovary cells. Mol Cell. Biol., 4, 1792–1799.Google Scholar
  99. Gould, S. J. (1983) In Hens Teeth and Horses Toes, W. W. Norton and Co., USA.Google Scholar
  100. Gruenbaum, Y., Cedar, H. and Razin, A. (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature, 295, 620–622.Google Scholar
  101. Haefner, K. (1968) Concerning the mechanism of ultraviolet mutagenesis. A micromanipulatory pedigree analysis in Schizosaccharomyces pombe. Genetics, 57, 169–178.Google Scholar
  102. Hagedorn, R., Thielman, H. W., Fischer, H. and Schroeder, C. H. (1983) SV40 induced transformation and T-antigen production is enhanced in normal and repair- deficient human fibroblasts after pre treatment of cells with UV light. J. Cancer Res. Clin. Oncol., 106, 93–96.Google Scholar
  103. Hall, J. D. and Mount, D. W. (1981) Mechanisms of DNA replication and mutagenesis in ultraviolet-irradiated bacteria and mammalian cells. Prog. Nucl. Acids Res. Mol. Biol, 25, 53–126.Google Scholar
  104. Hall, J. D., Featherston, J. D. and Almy, R. E. (1980) Evidence for repair of ultraviolet light-damaged Herpes virus in human fibroblasts by a recombination mechanism. Virology, 105, 490–500.Google Scholar
  105. Hall, K. Y., Bergman, K. and Waif ord, R. L. (1981) DNA repair, H-2, and ageing in NZB and CBA mice. Tissue Antigens, 17, 104–110.Google Scholar
  106. Hall, K. Y., Hart, R. W., Benirschke, A. K. and Walford, R. L. (1984) Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievable lifespan. Mech. Ageing Dev., 24, 163–173.Google Scholar
  107. Hanawalt, P. C., Cooper, P. K., Ganesan, A. K. and Smith, C. A. (1979) DNA repair in bacteria and mammalian cells. Ann. Rev. Biochem., 48, 783–836.Google Scholar
  108. Harland, R. M. (1982) Inheritance of DNA methylation in microinjected eggs of Xenopus laevis. Proc. Natl Acad. Sci. USA, 79, 2323–2327.Google Scholar
  109. Harm, W. and Hillebrandt, B. (1962) A non-photoreactivable mutant of E. coli B. Photochem. Photobiol., 1, 271–272.Google Scholar
  110. Harris, A. L., Karr an, P. and Lindahl, T. (1983) 06-methylguanine-DNA methyl- transferase of human lymphoid cells: Structural and kinetic properties and absence in repair-deficient cells. Cancer Res., 43, 3247–3252.Google Scholar
  111. Harris, P. V. and Boyd, J. B. (1980) Excision repair in Drosophila. Analysis of strand breaks appearing in DNA of mei-9 mutants following mutagen treatment. Biochim. Biophys. Acta, 610, 116–129.Google Scholar
  112. Hart, R. W., D’Ambrossio, S. M.,Ng,K. J. andModak, S. (1979)Longevity, stability and DNA repair. Mech. Ageing Dev., 9, 203–223.Google Scholar
  113. Hart, R. W. and Setlow, R. B. (1974) Correlation between deoxyribonucleic acid excision-repair and lifespan in a number of mammalian species. Proc. Natl Acad. Sci. USA, 71, 2169–2173.Google Scholar
  114. Hart, R. W. and Setlow, R. B. (1976) DNA repair in late passage human cells. Mech. Ageing Dev., 5, 67–77.Google Scholar
  115. Hart, R. W., Setlow, R. B. and Woodhead, A. D. (1977) Evidence that pyrimidine dimers in DNA can give rise to tumours. Proc. Natl Acad. Sci. USA, 74, 5574–5578.Google Scholar
  116. Haseltine, W. A. (1983) Site specificity of ultraviolet light induced mutagenesis. In Cellular Responses to DNA Damage (eds E. C. Freidberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 3–22.Google Scholar
  117. Haseltine, W. A., Gordon, L. K., Lindan, C. P., Grafstrom, R. H., Shaper, M. L. (1980) Cleavage of pyrimidine dimers in specific DNA sequences by a pyrimidine dimer DNA-glycosylase of M. luteus. Nature, 285, 634–641.Google Scholar
  118. Henner, W. D., Grunberg, S. M. and Haseltine, W. A. (1983) Enzyme action at 3′ termini of ionizing radiation-induced DNA strand breaks. J. Biol. Chem., 258, 15 198–15 205.Google Scholar
  119. Hickson, I. D., Arthur, H. M., Bramhill, D. and Emmerson, P. T. (1983) The E. coli uvrD gene product is DNA helicase II. Mol. Gen. Genet., 190, 265–270.Google Scholar
  120. Ho, K. S. Y. (1975) Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae. Mutation Res., 30, 327–334.Google Scholar
  121. Hofemeister, J. and Eitner, G. (1981) Repair and plasmid R46 mediated mutation requires inducible functions in Proteus mirabilis. Mol. Gen. Genet., 183, 369–375.Google Scholar
  122. Holliday, R. (1962) Mutation and replication in Ustilago maydis. Genet. Res., Camb., 3, 472–486.Google Scholar
  123. Holliday, R. A. (1964) The mechanism of gene conversion in fungi. Genet. Res., Camb., 5, 282–304.Google Scholar
  124. Holliday, R. (1979) A new theory of carcinogenesis. Brit. J. Cancer., 40, 513–522.Google Scholar
  125. Holliday, R. (1979) A new theory of carcinogenesis. Brit. J. Cancer., 40, 513–522.Google Scholar
  126. Howard-Flanders, P., West, S. C. and Stasiak, A. (1984) Role of RecA protein spiral filaments in genetic recombination. Nature, 309, 215–220.Google Scholar
  127. Ichikawa-Ryo, H. and Kondo, S. (1975) Indirect mutagenesis in phage lambda by ultraviolet preirradiation of host bacteria. J. Mol. Biol., 97, 77–92.Google Scholar
  128. Iwatsuki, N., Joe, C. O. and Werbin, H. (1980) Evidence that deoxyribonucleic acid photolyase from baker’s yeast is a flavoprotein. Biochemistry, 19, 1172–1176.Google Scholar
  129. James, A. P. and Kilbey, B. J. (1977) The timing of UV mutagenesis in yeast: A pedigree analysis of induced recessive mutation. Genetics, 87, 237–248.Google Scholar
  130. Jeggo, P. A. and Kemp, L. M. (1983) X-ray-sensitive mutants of Chinese hamster ovary cell line. Isolation and cross-sensitivity to other DNA-damaging agents. Mutation Res., 112, 313–327.Google Scholar
  131. Jones, P. A. and Taylor, S. M. (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell, 20, 85–93.Google Scholar
  132. Karran, P., Hjelmgren, T. and Lindahl, T. (1982) Induction of a DNA glycosylase for N methylated purines is part of the adaptive response to alkylating agents. Nature, 296, 770–773.Google Scholar
  133. Karran, P. and Lindahl, T. (1978) Enzymatic excision of free hypoxanthine from polydeoxynucleotides and DNA containing deoxyinosine monophosphate residues. J. Biol. Chem., 253, 5877–5879.Google Scholar
  134. Karran, P. and Lindahl, T. (1980) Hypoxanthine in deoxyribonucleic acid: Generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry, 19, 6005–6011.Google Scholar
  135. Kastan, M. B., Go wans, B. J. and Lieberman, M. W. (1982) Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA. Cell, 30, 509–516.Google Scholar
  136. Katcher, H. L. and Wallace, S. S. (1983) Characterization of the Escherichia coli X-ray endonuclease, Endonuclease HI. Biochemistry, 22, 4071–4081.Google Scholar
  137. Kato, H., Harada, M., Tsuchiya, K. and Moriwaki, K. (1980) Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and lifespan of the donor species. Japan. J. Genetics, 55, 99–108.Google Scholar
  138. Kato, T. (1977) Effects of chloramphenicol and caffeine on postreplication repair in uvrA umuC - and uvrA - recF - strains of Escherichia coli. Mol. Gen. Genet., 156, 115–120.Google Scholar
  139. Kato, T. and Shinoura, Y. (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet., 156, 121–131.Google Scholar
  140. Kemp, L. M. (1985) PhD thesis, Council for National Academic Awards, London.Google Scholar
  141. Kemp, L. M., Sedgwick, S. G. and Jeggo, P. A. (1984) X-ray sensitive mutants of Chinese hamster ovary cells defective in double-strand break rejoining. Mutation Res., 132, 189–196.Google Scholar
  142. Kidson, C., Chen, P., Imray, F. P. and Gipps, E. (1983) Nervous system disease associated with dominant cellular radiosensitivity. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 721–729.Google Scholar
  143. Kitagawa, Y., Akaboshi, E., Shinagawa, H., Horii, T., Ogawa, H. and Kato, T. (1985) Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc. Natl Acad. Sei. USA, 82, 4336–4340.Google Scholar
  144. Kitayama, S. and Matsuyama, A. (1968) Possibility of the repair of double-strand scissions in Micrococcus radiodurans DNA caused by gamma rays. Biochem. Biophys. Res. Commun., 33, 418–422.Google Scholar
  145. Kondo, S., Ichikawa, H., Iwo, K. and Kato, T. (1970) Base-change mutagenesis and prophage induction in strains of Escherichia coli with different repair capacities. Genetics, 66, 187–217.Google Scholar
  146. Kraemer, K. H., Lee, M. M. and Scotto, J. (1984) DNA repair protects against cutaneous and internal neoplasia, evidence from xeroderma pigmentosum. Carcinogenesis, 5, 511–514.Google Scholar
  147. Krasin, F. and Hutchinson, F. (1977) Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J. Mol. Biol., 116, 81–98.Google Scholar
  148. Krasin, F. and Hutchinson, F. (1981) Repair of DNA double-strand breaks in Escherichia coli cells requires synthesis of proteins that can be induced by UV light. Proc. Natl Acad. Sei. USA, 78, 3450–3453.Google Scholar
  149. Krisch, R. E., Krasin, F. and Sauri, C. J. (1976) DNA breakage, repair, and lethality after 125I decay in rec+ and recA strains of Escherichia coli. Int. J. Radiat. Biol, 29, 37–50.Google Scholar
  150. Krontiris, T. G., DiMartino, N. A., Colb, M. and Parkinson, D. R. (1985) Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumour DNAs of cancer patients. Nature, 313, 369–374.Google Scholar
  151. Krueger, J. H. and Walker, G. C. (1984) groEL and dnaK genes of Escherichia coli are induced by UV irradiation and nalidixic acid in a htpR+ - dependent fashion. Proc. Natl Acad. Sei. USA, 81, 1499–1503.Google Scholar
  152. Kucherlapati, R. S., Eves, E. M., Song, K.-Y., Morse, B. S. and Smithies, O. (1984) Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc. Natl Acad. Sei. USA, 81, 3153–3157.Google Scholar
  153. Kumura, K. and Sekiguchi, M. (1984) Identification at the uvrD gene product of Escherichia coli as DNA Helicase II and its induction by DNA damaging agents. J. Biol. Chem., 259, 1560–1565.Google Scholar
  154. Kumura, K., Sekiguchi, M., Steinum, A.-L. and Seeberg, E. (1985) Stimulation of the UvrABC enzyme-catalysed repair reactions by the UvrD protein (DNA helicase II). Nucl. Acids Res., 13, 1483–1492.Google Scholar
  155. Kunkel, T. (1984) Mutational specificity of depurination. Proc. Natl Acad. Sei. USA, 81, 1494 — 1498.Google Scholar
  156. Kunkel, T., Schaaper, R. M. and Loeb, L. A. (1983) Depurination induced infidelity of deoxyribonucleic acid synthesis with purified deoxyribonucleic acid replication proteins in vitro. Biochemistry, 22, 2378–2384.Google Scholar
  157. Lackey, D., Krauss, S. W. and Linn, S. (1982) Isolation of an altered form of DNA polymerase I from Escherichia coli cells induced for recA/lexA functions. Proc. Natl Acad. Sei. USA, 79, 330–334.Google Scholar
  158. Lai, C.-J. and Nathans, D. (1975) A map of temperature-sensitive mutants of simian virus 40. Virology, 66, 70–81.Google Scholar
  159. Lancaster, H. O. (1956) Some geographical aspects of the mortality from melanoma in Europeans. Med. J. Aust., 1, 1082–1087.Google Scholar
  160. Land, H., Panada, L. F. and Weinberg, R. A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two co-operating oncogenes. Nature, 304, 596–602.Google Scholar
  161. Lawley, P. D. and Brookes, P. (1963) Further studies on the alkylation of nucleic acids and their constituent nucleotides. Biochem. J., 89, 127–138.Google Scholar
  162. Lawrence, C. W. and Christensen, R. B. (1979) Absence of relationship between UV-induced reversion frequency and nucleotide sequence at the cyc1 locus of yeast. Mol. Gen. Genet., 177, 31–38.Google Scholar
  163. Leadon, S. and Hanawalt, P. C. (1984) Ultraviolet irradiation of monkey cells enhances the repair of DNA adducts in alpha DNA. Carcinogenesis, 5, 1505–1510.Google Scholar
  164. Leaper, S., Resnick, M. A. and Holliday, R. (1980) Repair of double-strand breaks and lethal damage in DNA of Ustilago maydis. Genet. Res., Camb., 35, 291–307.Google Scholar
  165. Leaper, S., Resnick, M. A. and Holliday, R. (1980) Repair of double-strand breaks and lethal damage in DNA of Ustilago maydis. Genet. Res., Camb., 35, 291–307.Google Scholar
  166. LeClerc, J. E., Istock, N. L., Saran, B. R. and Allen, R. (1984) Sequence analysis of ultraviolet-induced mutations in M13 lacZ hybrid phage DNA. J. Mol. Biol., 180, 217–237.Google Scholar
  167. Lee, J. A. and Merril, J. M. (1971) Sunlight and the aetiology of malignant melanoma: a synthesis. Med. J. Aust., 2, 846–851.Google Scholar
  168. Lee, M. G. and Yarranton, G. T. (1983) Inducible DNA repair in Ustilago maydis. Mol. Gen. Genet., 185, 245–250.Google Scholar
  169. Lehmann, A. R. (1972) Postreplication repair of DNA in ultraviolet-irradiated mammalian cells. J. Mol. Biol., 66, 319–337.Google Scholar
  170. Lehmann, A. R., Kirk-Bell, S., Arlett, C. F., Paterson, M. C., Lohman, P. H. M., de Weerd-Kastelein, E. A. and Bootsma, D. (1975) Xeroderma Pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV irradiation. Proc. Natl Acad. Sei. USA, 72, 219–223.Google Scholar
  171. Lehmann, A. R. and Kirk-Bell, S. (1972) Post replication repair of DNA in ultraviolet- irradiated mammalian cells. No gaps on DNA synthesized late after ultraviolet irradiation. Eur. J. Biochem., 31, 438–445.Google Scholar
  172. Lehmann, A. R. and Kirk-Bell, S. (1978) Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts. Photochem. Photobiol., 27, 297–307.Google Scholar
  173. Lemontt, J. F. (1971a) Mutants of yeast defective in mutation induced by ultra-violet light. Genetics, 68, 21–33.Google Scholar
  174. Lemontt, J. F. (1971b) Pathways of ultraviolet mutability in Saccharomyces cerevisiae 1. Some properties of double mutants involving uvs9 and rev. Mutation Res., 13, 311–317.Google Scholar
  175. Lemontt, J. F. (1971c) Pathways of ultraviolet mutability in Saccharomyces cerevisiae 11. The effect of rev genes on recombination. Mutation Res., 13, 319–326.Google Scholar
  176. Lieberman, M. W., Beach, L. R. and Palmiter, R. D. (1983) Ultraviolet radiation- induced metallothionein-1 gene activation is associated with extensive DNA demethylation. Cell, 35, 207–214.Google Scholar
  177. Lin, P. F., Bradwell, E. and Howard-Flanders, P. (1977) Initiation of genetic exchanges in phage-prophage crosses. Proc. Natl Acad. Sei. USA, 74, 291–295.Google Scholar
  178. Lindahl, T. (1979) DNA glycosylases, endonucleases for apurinic/apyrimidinic sites and base excision repair. Prog. Nucl. Acid Res. Mol. Biol., 22, 135–192.Google Scholar
  179. Lindahl, T. (1982) DNA repair enzymes. Ann. Rev. Biochem., 51, 61–87.Google Scholar
  180. Lindahl, T., Demple, B. and Robins, P. (1982) Suicide inactivation of the E. coli O 6-methylguanine-DNA methyltransferase. EMBOJ., 1, 1359–1363.Google Scholar
  181. Lindahl, T. and Karlstrom, O. (1973) Heat-induced depyrimidination of deoxy-ribonucleic acid in neutral solution. Biochemistry, 12, 5151–5154.Google Scholar
  182. Lindahl, T. and Nyberg, B. (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11, 3610–3617.Google Scholar
  183. Lindahl, T. and Nyberg, B. (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry, 13, 3405–3410.Google Scholar
  184. Lindahl, T., Sedgwick, B., Demple, B. and Karr an, P. (1983) Enzymology and regulation of the adaptive response to alkylating agents. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 241–253.Google Scholar
  185. Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B. and Sperens, B. (1977) DNA iV-glycosidases. Properties of uracil-DNA glycosidase from Escherichia coli J. Biol. Chem., 252, 3286–3294.Google Scholar
  186. Linn, S., Kairis, M. and Holliday, R. (1976) Decreased fidelity of DNA polymerase activity isolated from ageing human fibroblasts. Proc. Natl Acad. Sei. USA, 73, 2818–2822.Google Scholar
  187. Little, J. W. (1982) The SOS regulatory system: control of its state by the level of recA protease. J. Mol. Biol., 167, 791–808.Google Scholar
  188. Little, J. W. (1983) Variations in the in vivo stability of LexA repressor during the SOS regulatory cycle. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 369–378.Google Scholar
  189. Little, J. W. (1984) Autodigestion of LexA and phage repressors. Proc. Natl Acad. Sei. USA, 81, 1375–1379.Google Scholar
  190. Little, J. W. and Mount, D. W. (1982) The SOS regulatory system oi Escherichia coli. Cell, 29, 11–22.Google Scholar
  191. Little, J. W., Edmiston, S.H., Pacelli, L. Z. and Mount, D. W. (1980) Cleavage of the Escherichia coli lex A protease by the recA protease. Proc. Natl Acad. Sei. USA, 77, 3225–3229.Google Scholar
  192. Little, J. W., Mount, D. W. and Yannisch-Perron, C. R. (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc. NatlAcad. Sei. USA, 78, 4199–4203.Google Scholar
  193. Liu, S.-C. C., Parsons, C. S. and Han await, P. C. (1982) DNA repair response in human epidermal keratinocytes from donors of different age. J. Invest. Dermatol 79, 330–335.Google Scholar
  194. Lloyd, R. G. (1978) Hyper-recombination in Escherichia coli K-12 mutants constitutive for protein X synthesis. J. Bacteriol., 134, 929–935.Google Scholar
  195. Lu, A.-L., Clark, S. and Mödlich, P. (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc. Natl Acad. Sci. USA, 80, 4639–4643.Google Scholar
  196. Lytle, C. D., Goddard, J. G. and Lin, C. H. (1980) Repair and mutagenesis of herpes simplex virus in UV-irradiated monkey cells. Mutation Res., 70, 139–149.Google Scholar
  197. McCann, J., Choi, E., Yamasaki, E. and Ames, B.N. (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Natl Acad. Sci. USA, 72, 5135–5139.Google Scholar
  198. McCarthy, T. V. and Lindahl, T. (1985) Methyl phosphotriesters in alkylated DNA are repaired by the Ada regulatory protein of E. coli. Nucl. Acids Res., 13, 2683– 2698.Google Scholar
  199. McCarthy, T. V., Karr an, P. and Lindahl, T. (1984) Inducible repair of O6-alkylated DNA pyrimidines in Escherichia coli. EMBO J., 3, 545–550.Google Scholar
  200. McClanahan, T. and McEntee, K. (1984) Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol., 4, 2356–2363.Google Scholar
  201. McKee, R. H. and Lawrence, C. W. (1979) Genetic analysis of gamma ray mutagenesis in yeast. I. Reversion in radiation sensitive genes. Genetics, 93, 361–373.Google Scholar
  202. Magnus, K. (1973) Incidence of malignant melanoma of the skin in Norway, 1955– 1970. Variations in time and space and solar radiation. Cancer, 32, 1275–1286.Google Scholar
  203. Maher, V. M. and McCormick, J. J. (1976) Effect of DNA repair on the cytotoxicity and mutagenicity of UY irradiation and of chemical carcinogens in normal and xeroderma pigmentosum cells. In Biology of Radiation Carcinogenesis (eds J. M. Yuhas, R. W. Tennant and J. B. Regan ), Raven Press, New York, pp. 129–145.Google Scholar
  204. Maher, V. M., Ouellette, L. M., Curren, R. D. and McCormick, J. J. (1976) Frequency of ultraviolet light-induced mutations is higher in xeroderma pigmentosum variant cells than in normal cells. Nature, 261, 593–595.Google Scholar
  205. Margison, G. P., Cooper, D. P. and Brennand, J. (1985) Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay. Nucl. Acids Res., 13, 1939–1952.Google Scholar
  206. Marinus, M. G. (1984) DNA methylation (eds A. Razin, H. Ceder, and A. D. Riggs), Springer Series in Molecular Biology, Springer Verlag, New York.Google Scholar
  207. Mattern, I. E., Olthoff-Smit, F. P., Jacobs-Meijsing, B. L. M., Enger-Valk, B. E., Pouwels, P. H. and Lohman, P. H. M. (1985) A system to determine basepair substitutions at the molecular level, based on restriction enzyme analysis; influence of muc genes of pKMlOl on the specificity of mutation induction in E. coli. Mutation Res., 148, 35–45.Google Scholar
  208. Mattern, M. R. and Cerutti, P. A. (1975) Age-dependent excision repair of damaged thymine from γ-irradiated DNA by isolated nucleic from human fibroblasts. Nature, 254, 450–452.Google Scholar
  209. Maynard-Smith, J. (1978) The Evolution of Sex, Cambridge University Press, Cambridge.Google Scholar
  210. Mehta, J. R., Ludlum, D. B., Renard, A. and Verly, W. G. (1981) Repair of O6-ethylguanine in DNA by a chromatin fraction from rat liver: Transfer of the ethyl group to an acceptor protein. Proc. Natl Acad. Sci. USA, 78, 6766–6770.Google Scholar
  211. Mennigman, H.-D. (1972) Pyrimidine dimers as pre-mutational lesions in Escherichia coli WP2 Her-. Mol Gen. Genet., 117, 167–186.Google Scholar
  212. Meyn, R. E. and Humphrey, R. M. (1971) Deoxyribonucleic acid synthesis in ultraviolet light irradiated Chinese hamster cells. Biophys. J., 11, 295–301.Google Scholar
  213. Miller, J. H. (1982) Mutational specificity in bacteria. Ann. Rev. Genet., 17, 215–238.Google Scholar
  214. Miller, J. H. (1983) Carcinogens induce targeted mutations in Escherichia coli. Cell, 31, 5–7.Google Scholar
  215. Miller, J. H. and Low, K. B. (1984) Specificity of mutagenesis resulting from the induction of the SOS system in the absence of mutagenic treatment. Cell, 37, 675–682.Google Scholar
  216. Miller, L. K., Cooke,B.E. and Fried, M. (1976) Fate of mismatched base-pair regions in polyoma heteroduplex DNA during infection of mouse cells. Proc. Natl Acad. Sei. USA, 73, 3073–3077.Google Scholar
  217. Milman, G., Krauss, S. W. and Olsen, A. S. (1977) Tryptic peptide analysis of normal and mutant forms of hypoxanthine phosphoribosyltransferase from HeLa cells. Proc. Natl Acad. Sei. USA, 74, 926–930.Google Scholar
  218. Milman, G., Lee, E., Changas, G. S., McLaughlin, J. R. and George, M. G. (1976) Analysis of HeLa cell hypoxanthine phosphoribosyltransferase mutants and revertants by two dimensional Polyacrylamide gel electrophoresis: Evidence for silent gene inactivation. Proc. Natl Acad. Sei. USA, 73, 4589–4593.Google Scholar
  219. Miura, A. and Tomizawa, J.-I. (1968) Studies on radiation sensitive mutants of E. coli III. Participation of the Ree system in induction of mutation by ultraviolet irradiation. Mol. Gen. Genet., 103, 1–10.Google Scholar
  220. Moore, P. D. and Holliday, R. (1976) Evidence for the formation of hybrid DNA during mitotic recombination in Chinese hamster cells. Cell, 8, 573–579.Google Scholar
  221. Moore, P., Bose, K., Rabkin, S. and Strauss, B. (1981) Sites of termination of in vitro DNA synthesis on ultraviolet and N-acetylaminofluorene treated ФX174 templates by prokaryotic and eukaryotic DNA polymerases. Proc. Natl Acad. Sei. USA, 78, 110–114.Google Scholar
  222. Moore, P. D., Rabkin, S. D., Osborn, A. L., King, C. M. and Strauss, B. S. (1982) Effect of acetylated and deacetylated 2-aminofluorene adducts on in vitro DNA synthesis. Proc. Natl Acad. Sei. USA, 79, 7166–7170.Google Scholar
  223. Mortelmans, K., Cleaver, J. E., Friedberg, E. C., Paterson, M. C., Smith, B. P. and Thomas, G. H. (1977) Photoreactivation of thymine dimers in UV-irradiated human cells: unique dependence on culture conditions. Mutation Res., 44, 433–446.Google Scholar
  224. Mortelmans, K., Friedberg, E. C., Slor, H., Thomas, G. and Cleaver, J. E. (1976) Defective thymine dimer excision by cell-free extracts of xeroderma pigmentosum cells. Proc. Natl Acad. Sei. USA, 73, 2757–2761.Google Scholar
  225. Mortimer, R. K., Contopoulou, R. and Schild, D. (1981) Mitotic chromosome loss in a radiation sensitive strain of the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sei. USA, 78, 5778–5782.Google Scholar
  226. Mosbaugh, D. W. and Linn, S. (1980) Further characterization of human fibroblast apurinic/apyrimidinic DNA endonucleases. J. Biol. Chem., 255, 11743–11752.Google Scholar
  227. Nakabeppu, Y. and Sekiguchi, M. (1981) Physical association of pyrimidine dimer glycosylase and apurinic/apyrimidinic DNA endonuclease essential for repair of ultraviolet-damaged DNA. Proc. Natl Acad. Sei. USA, 78, 2742–2746.Google Scholar
  228. Nalbantoglu, J., Gonclaves, O. and Meuth, M. (1983) Structure of mutant alleles at the aprt locus of Chinese hamster ovary cells. J. Mol. Biol., 167, 575–594.Google Scholar
  229. Nasim, A. and Auerbach, C. (1967) The origin of complete and mosaic mutants from mutagenic treatment of single cells. Mutation Res., 4, 1–14.Google Scholar
  230. Nes, I. F. (1980) Purification and properties of a mouse cell DNA repair endonuclease, which recognises lesions in DNA induced by ultraviolet light, depurination, X-rays and OsO4 treatment. Eur. J. Biochem., 112, 161–168.Google Scholar
  231. Nevers, P. and Spatz, H. C. (1975) Escherichia coli mutants uvrD and uvrE deficient in gene conversion of X-heteroduplexes. Mol. Gen. Genet., 139, 233–243.Google Scholar
  232. Newbold, R. F. and Overeil, R. W. (1983) Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature, 304, 648–651.Google Scholar
  233. Newbold, R. F., Warren, W., Medcalf, A. S. C. and Amos, J. (1980) Mutagenicity of carcinogenic methylating agents is associated with a specific DNA modification. Nature, 283, 596–599.Google Scholar
  234. Nishioka, H. and Doudney, C. O. (1969) Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutation Res., 8, 215–228.Google Scholar
  235. Nishioka, H. and Doudney, C. O. (1970) Different modes of loss of photoreversibility and suppressor mutations to tryptophan independence in an auxotrophic strain of Escherichia coli. Mutation Res., 9, 349–358.Google Scholar
  236. Orr-Weaver, T. and Szostak, J. W. (1985) Fungal recombination. Microbiol. Rev., 49, 33–58.Google Scholar
  237. Paffenholz, V. (1978) Correlation between DNA repair of embryonic fibroblasts and different lifespan of 3 inbred mouse strains. Mech. Ageing Dev., 1, 131–150.Google Scholar
  238. Painter, R. B., Clarkson, J. M. and Young, B. R. (1973) Ultraviolet induced repair replication in ageing diploid human cells (WIr38). Radiat. Res., 56, 560–564.Google Scholar
  239. Paterson, M. C., Lohman, P. H. M. and Slutyer, M. L. (1973) Use of a UV endonuclease from Micrococcus luteus to monitor the progress of DNA repair in UV-irradiated human cells. Mutation Res., 19, 245–256.Google Scholar
  240. Pegg, A. E. (1984) Methylation of the O6 position of guanine in DNA is the most likely initiating event in carcinogenesis by methylating agents. Cancer Invest., 2, 223–231.Google Scholar
  241. Peleg, L., Raz, E. and Benlshai, R. (1976) Changing capacity for DNA excision repair in mouse embryonic cells in vitro. Exp. Cell Res., 104, 301–307.Google Scholar
  242. Peterson, T. A., Prakash, L., Prakash, S., Osley, M. A. and Reed, S. T. (1985) Regulation of CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Cell. Biol., 5, 226–235.Google Scholar
  243. Picksley, S. M., Ahfield, P. V. and Lloyd, R. G. (1984) Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol. Gen. Genet., 195, 267–274.Google Scholar
  244. Pollard, E. and Randall, E. P. (1973) Studies on the inducible inhibitor of radiation- induced DNA degradation of E. coli. Radiat. Res., 55, 265–279.Google Scholar
  245. Pollard, E. C., Fluke, D. and Kazanis, D. (1981) Induced radioresistance: An aspect of induced repair. Mol. Gen. Genet., 184, 421–29.Google Scholar
  246. Prakash, L. (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, radl8, rev3 and rad52 mutations. Mol. Gen. Genet., 184, 471–478.Google Scholar
  247. Pukkila, P. J. (1978) The recognition of mismatched base pairs in DNA by DNAse I from Ustilago maydis. Mol. Gen. Genet., 161, 245–250.Google Scholar
  248. Pukkila, P. J., Peterson, J., Herman, G. (1983) Effects of high levels of DNA adenine methylation on methyl-directed mismatch repair in Escherichia coli. Genetics, 104, 571–582.Google Scholar
  249. Radany, E. H. and Friedberg, E. C. (1980) A pyrimidine dimer-DNA glycosylase activity associated with the v gene product of bacteriophage T4. Nature, 286, 182–185.Google Scholar
  250. Radding, C. M. (1982) Homologous pairing and strand exchange in genetic recombination. Ann. Rev. Genet., 16, 405–437.Google Scholar
  251. Radman, M., Wagner, R. E., Glickman, B. W. and Meselson, M. (1980) DNA methylation, mismatch correction and genetic stability. In Progress in Environmental Mutagenesis (ed. M. Alacevic ), Elsevier-North Holland Biomedical Press, Amsterdam, pp. 121–130.Google Scholar
  252. Razzaque, A., Chakrabarti, S., Joffee, S. and Seidman, M. (1984) Mutagenesis of a shuttle vector plasmid in mammalian cells. Mol. Cell. Biol., 4, 435–441.Google Scholar
  253. Regan, J. D. and Setlow, R. B. (1974a) Two forms of repair in DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res., 34, 3318–3325.Google Scholar
  254. Regan, J. D. and Setlow, R. B. (1974b) DNA repair in human progeroid cells. Biochem. Biophys. Res. Commun, 59, 858–864.Google Scholar
  255. Regan, J. D., Trosko, J. E. and Carrier, W. L. (1968) Evidence for excision of ultraviolet induced pyrimidine dimers from the DNA of human cells in vitro. Biophys. J., 8, 319–325.Google Scholar
  256. Regan, J. D., Carrier, W. L., Samet, C. and Olla, B. L. (1982) Photoreactivation in two closely related marine fishes having different longevities. Mech. Ageing Dev., 18, 59–66.Google Scholar
  257. Resnick, M. A. (1978) The importance of DNA double-strand break repair in yeast. In DNA Repair Mechanisms (eds P. C. Hanawalt, E. C. Friedberg and C. F. Fox ), Academic Press, New York, pp. 417–420.Google Scholar
  258. Resnick, M. A. and Moore, P. D. (1979) Molecular recombination and the repair of DNA double strand breaks in CHO cells. Nucl. Acid Res., 6, 3145–3160.Google Scholar
  259. Reynolds, R. J. and Friedberg, E. C. (1981) Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: Incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. J. Bacteriol., 146, 692–704.Google Scholar
  260. Reynolds, R. J., Love, J. D. and Friedberg, E. C. (1981) Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: Excision of dimers in cell extracts. J. Bacteriol., 147, 705–708.Google Scholar
  261. Riazzudin, S. and Lindahl, T. (1978) Properties of 3-methyladenine-DNA glycosylase from Escherichia coli. Biochemistry, 17, 2110–2118.Google Scholar
  262. Riggs, A. D. and Jones, P. A. (1983) 5-methylcytosine, gene regulation and cancer. Adv. Cancer Res., 40, 1–30.Google Scholar
  263. Roberts, J. W. and Devoret, R. (1983) Lysogenic induction. In Lambda II eds P. W. Hendrix, J. W. Roberts, F. W. Stahl and R. A. Weisberg), Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  264. Robbins, J. H. (1983) Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 671–700.Google Scholar
  265. Robbins, J. H., Moshel, A. N., Lutzner, M. A., Ganges, M. B. and Dupuy, J. M. (1983) A new patient with both xeroderma pigmentosum and Cockayne’s syndrome is in a new xeroderma pigmentosum complementation group. J. Invest. Dermatol., 80, 331–340.Google Scholar
  266. Robins, P. and Cairns, J. (1979) The numerology of the adaptive response to alkylating agents. Nature, 280, 74–76.Google Scholar
  267. Rogers, S. G. and Weiss, B. (1980) Exonuclease ID of Escherichia coli K-12 is an AP endonuclease. Methods Enzymol., 65, 201–211.Google Scholar
  268. Rolfe, M. (1985a) UV-inducible protein in Saccharomyces cerevisiae. Curr. Gen., 9, 529–532.Google Scholar
  269. Rolfe, M. (1985b) UV-inducible transcripts in Saccharomyces cerevisiae. Curr. Gen., 9, 533–538.Google Scholar
  270. Rommelaere, J. and Miller-Faures, A. (1975) Detection by density equilibrium centrifugation of recombinant-like DNA molecules in somatic mammalian cells. J. Mol Biol, 98, 195–218.Google Scholar
  271. Ruby, S. W. and Szostak, J. W. (1985) Specific Saccharomyces cerevisiae genes are expressed in response to DNA damaging agents. Mol. Cell Biol, 5, 75–84.Google Scholar
  272. Ruley, E. (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature, 304, 602–606.Google Scholar
  273. Rydberg, B. and Lindahl, T. (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J., 1, 211–216.Google Scholar
  274. Rydberg, G. (1978) Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutation Res., 52, 11–24.Google Scholar
  275. Sacher, G. A. and Hart, R. W. (1978) Longevity, ageing and comparative cellular and molecular biology of the housemouse, Mus musculus, and the white-footed mouse, Peromyscus leucopus. In Birth Defects: Original Article Series, Vol. 14 (eds D. Bergsma and D. Harrison ), Alan R. Liss Inc., New York, pp. 71–96.Google Scholar
  276. Sage, E. and Haseltine, W. A. (1984) High ratio of alkali-sensitive lesions to total DNA modification induced by benzo (a) pyrene diol epoxide. J. Biol Chem., 259, 11098–11102.Google Scholar
  277. Samson, L. and Cairns, J. (1977) A new pathway for DNA repair in Escherichia coli. Nature, 267, 281–282.Google Scholar
  278. Samson, L. and Schwartz, J. F. (1980) Evidence for an adaptive DNA repair pathway in CHO and human skin fibroblast cell lines. Nature, 287, 801–863.Google Scholar
  279. Sancar, A. and Rupp, W. D. (1983) A novel repair enzyme UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell, 33, 249–260.Google Scholar
  280. Sancar, A. and Sancar, G. B. (1984) Escherichia coli DNA photolyase is a flavoprotein. J. Mol Biol, 172, 223–227.Google Scholar
  281. Sancar, A., Franklin, K. A. and Sancar, G. B. (1984) Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc. Natl Acad. Sei. USA, 81, 7397–7401.Google Scholar
  282. Sancar, A., Smith, F. W. and Sancar, G. B. (1984) Purification of Escherichia coli DNA photolyase. J. Biol Chem., 259, 6028–6032.Google Scholar
  283. Sarasin, A. and Benoit, A. (1980) Induction of an error prone mode of DNA repair in UV-irradiated monkey kidney cells. Mutation Res., 70, 71–81.Google Scholar
  284. Sarasin, A. and Hanawalt, P. C. (1980) Replication of ultraviolet-irradiated simian virus 40 in monkey kidney cells. J. Mol Biol, 138, 299–319.Google Scholar
  285. Sarasin, A., Gaillard, C. and Benoit, A. (1981) Molecular mechanism of error-prone DNA replication induced in UV-irradiated or acetoxyacetylaminofluorene treated monkey cells. J. Supra. Struc. Supp., 5, 203.Google Scholar
  286. Schaaper, R. M. and Glickman, B. W. (1982) Mutability of bacteriophage M13 by ultraviolet light: role of pyrimidine dimers. Mol. Gen. Genet., 185, 404–407.Google Scholar
  287. Schaaper, R. M. and Loeb, L. A. (1981) Depurination causes mutations in SOS induced cells. Proc. Natl Acad. Sei. USA, 78, 1773–1777.Google Scholar
  288. Schaaper, R. M., Glickman, B. W. and Loeb, L. A. (1982) Role of depurination in mutagenesis by chemical carcinogens. Cancer Res., 42, 3480–3485.Google Scholar
  289. Schaaper, R. M., Kunkel, T. A. and Loeb, L. A. (1983) Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc. Natl Acad. Sei. USA, 80, 487–491.Google Scholar
  290. Schendel, P. F. and Robins, P. (1978) Repair of 06-methylguanine in adapted Escherichia coli. Proc. Natl Acad. Sei. USA, 75, 6017–6020.Google Scholar
  291. Schendel, P. F., Edington, B. V., McCarthy, J. G. and Todd, M. L. (1983) Repair of alkylation damage in E. coli. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 227–240.Google Scholar
  292. Schorpe, M., Mallick, U., Rahmsdorf, H. J. and Herrlich, P. (1984) UV-induced extracellular factors from human fibroblasts communicates the UV responses to non-irradiated cells. Cell, 37, 801–868.Google Scholar
  293. Sedgwick, S. G. and Goodwin, P. A. (1985) Differences in mutagenic and recombinational DNA repair in enterobacteria. Proc. Natl Acad. Sei. USA, 82, 4172–4176.Google Scholar
  294. Seeberg, E., Nissen-Meyer, J. and Strike, P. (1976) Incision of ultraviolet-irradiated DNA by extracts of E. coli requires three different gene products. Nature, 263, 524–526.Google Scholar
  295. Sekiya, T., Fushini, M., Hori, H., Hirohashi, S., Nishimura, S. and Sugimura, T. (1984) Molecular cloning and the total nucleotide sequence of the human c-Ha-ras-1 gene activated in a melanoma from a Japanese patient. Proc. Natl Acad. Sei. USA, 81, 4771–4775.Google Scholar
  296. Selsky, C. A., Henson, P., Weichselbaum, R. R. and Little, J. B. (1979) Defective reactivation of ultraviolet light irradiated Herpes virus by a Bloom’s syndrome fibroblast strain. Cancer Res., 39, 3392–3396.Google Scholar
  297. Setlow, R. B. (1978) Repair deficient human disorders and cancer. Nature, 271, 713–717.Google Scholar
  298. Setlow, R. B., Regan, J. D., German, J. and Carrier, W. L. (1969) Evidence that xeroderma pigmentosum cells do not perform the first step in repair of ultraviolet damage to their DNA. Proc. Natl Acad. Sei. USA, 64, 1035–1041.Google Scholar
  299. Sharp, J. D., Capecchi, N. E. and Capecchi, M. R. (1973) Altered enzymes in drug resistant variants of mammalian tissue culture cells. Proc. Natl Acad. Sei. USA, 70, 3145–3149.Google Scholar
  300. Shinura, Y., Ise, T., Kato, T. and Glickman, B. W. (1983) umuC Mediated misrepair mutagenesis in Escherichia coli: extent and specificity of SOS mutagenesis. Mutation Res., 111, 515–519.Google Scholar
  301. Siede, W. and Eckardt, F. (1984) Inducibility of error-prone repair in yeast? Mutation Res., 129, 3–11.Google Scholar
  302. Sinden, R. R. and Cole, R. S. (1978) Topography and kinetics of genetic recombination in Escherichia coli treated with psoralen and light. Proc. Natl Acad. Sei. USA, 75, 2373–2377.Google Scholar
  303. Sinzinis, B. I., Smirnov, G. B. and Saenko, A. A. (1973). Repair deficiency in Escherichia coli UV sensitive mutator strain uvr502. Biochem. Biophys. Res. Comm., 53, 309–316.Google Scholar
  304. Smith, C. A. and Hanawalt, P. C. (1976) Repair replication in cultured normal and transformed human fibroblasts. Biochim. Biophys. Acta, 447, 121–132.Google Scholar
  305. Smith, C. A. and Hanawalt, P. C. (1978) Phage T4 endonuclease V stimulates DNA repair replication in isolated nuclei from ultraviolet-irradiated human cells, including xeroderma pigmentosum fibroblasts. Proc. Natl Acad. Sei. USA, 75, 2598–2602.Google Scholar
  306. Spatz, H. C. and Trautner, T. A. (1970) One way to do experiments on gene conversion? Mol. Gen. Genet., 109, 84–106.Google Scholar
  307. Steinborn, G. (1978) Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization of DNA repair and mutagenesis. Mol. Gen. Genet., 165, 87–93.Google Scholar
  308. Stockdale, F. E. (1971) DNA synthesis in differentiating skeletal muscle cells: Initiation by ultraviolet light. Science, 171, 1145–1147.Google Scholar
  309. Strauss, B., Rabkin, S., Sagher, D. and Moore, P. (1982) The role of DNA polymerase in base substitution mutagenesis on non-instructional templates. Biochimie, 64, 829–838.Google Scholar
  310. Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. and Inouye, M. (1966) Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol., 31, 77–84.Google Scholar
  311. Sukumar, S., Notario, V., Martin-Zanca, D. and Barbacid, M. (1983) Induction of mammary carcinomas in rats by nitrosomethylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature, 306, 658–661.Google Scholar
  312. Sutherland, B. M. (1974) Photoreactivating enzyme from human leukocytes. Nature, 248, 109–112.Google Scholar
  313. Sutherland, B. M. (1981) Photoreactivating enzymes. In The Enzymes (ed. P. D. Boy er ), Academic Press, New York, pp. 482–515.Google Scholar
  314. Sutherland, B. M., Rice, M. and Wagner, E. K. (1975) Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme. Proc. Natl Acad. Sei. USA, 72, 103–107.Google Scholar
  315. Swift, S., Sholman, L., Perry, M. and Chase, C. (1976) Malignant neoplasms in the families of patients with Ataxia telangiectasia. Cancer Res., 36, 209–215.Google Scholar
  316. Szostak, J. W., Orr-Weaver, T. L. and Rothstein, R. J. (1983) The double-strand- break repair model for recombination. Cell, 33, 25–35.Google Scholar
  317. Tanaka, K., Sekiguchi, M. and Okada, Y. (1975) Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc. Natl Acad. Sei. USA, 72, 4071–4075.Google Scholar
  318. Taylor, A. M. R., Harnden, D. G., Arlett, C. F., Harcourt, S. A. and Lehmann, A. R. (1975) Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature, 258, 427–429.Google Scholar
  319. Teo, I., Sedgwick, B., Demple, B., Li, B. and Lindahl, T. (1984) Induction of resistance to alkylating agents in E. coli: the ada+ gene product serves both as a regulatory protein and as an enzyme for repair of mutagenic damage. EMBO J., 3, 2151–2157.Google Scholar
  320. Thacker, J., Debenham, P. G., Stretch, A. and Webb, M. B. T. (1983) The use of a cloned bacterial gene to study mutation in mammalian cells. Mutation Res., 111, 9–23.Google Scholar
  321. Thompson, K. V. A. and Holliday, R. (1983) Genetic effects on the longevity of cultured human fibroblasts II. DNA repair deficient syndromes. Gerontology, 29, 83–88.Google Scholar
  322. Thompson, L. H. and Carrano, A. V. (1983) Analysis of mammalian cell mutagenesis and DNA repair using in vitro selected CHO cell mutants. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss Inc., New York, pp. 125–143.Google Scholar
  323. Tindali, K. R., Stankowski, L. F., Machanoff, R. and Hsie, A. W. (1984) Detection of deletion mutations in pSV2gpt-transformed cells. Mol Cell. Biol., 4, 1411–1415.Google Scholar
  324. Todd, P. A. and Glickman, B. W. (1982) Mutational specificity of UV light in Escherichia coli: Indications for a role of DNA secondary structure. Proc. Natl Acad. Sei. USA, 79, 4123–4127.Google Scholar
  325. Toman, Z., Dambly, C. and Radman, M. (1980) Induction of a stable heritable epigenetic change by mutagenic carcinogens - a new test system. Mutation Res., 74, 242–243.Google Scholar
  326. Treton, J. A. and Curtois, Y. (1982) Correlation between DNA excision repair and mammalian lifespan in lens epithelial cells. Cell Biol. Int. Reports, 6, 253–260.Google Scholar
  327. Tye, B. K., Chien, J., Lehman, I. R., Duncan, B. K. and Warner, H. R. (1978) Uracil incorporation: A source of pulse-labelled DNA fragments in the replication of the Escherichia coli chromosome. Proc. Natl Acad. Sei. USA, 75, 233–237.Google Scholar
  328. Unrau, P. (1975) The excision of pyrimidine dimers from the DNA of mutant and wild-type strains of Ustilago. Mutation Res., 29, 53–65.Google Scholar
  329. Unrau, P., Wheatcroft, R. and Cox, B. S. (1971) Excision of pyrimidine dimers from DNA of ultraviolet irradiated yeast. Mol. Gen. Genet., 113, 359–362.Google Scholar
  330. Upcroft, P., Carter, B. and Kidson, C. (1980) Analysis of recombination in mammalian cells using SV40 genome segments having homologous overlapping termini. Nucl. Acids Res., 8, 2725–2736.Google Scholar
  331. Van Sluis, C. A., Mattern, I. E. and Patterson, M. C. (1974) Properties of uvrE mutants of Escherichia coli K12 I. Effects of UV irradiation on DNA metabolism. Mutation Res., 25, 273–279.Google Scholar
  332. Villani, G., Boiteux, S. and Radman, M. (1978) Mechanism of ultraviolet-induced mutagenesis: Extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc. Natl Acad. Sei. USA, 75, 3037–3041.Google Scholar
  333. Volkert, M. R., George, D. L. and Witkin, E. M. (1976) Partial suppression of the LexA phenotype by mutations (rnm) which restore ultraviolet resistance but not ultraviolet mutability to Escherichia coli B/r uvrA lex A. Mutation Res., 36, 17–28.Google Scholar
  334. Volkert, M. R. and Nguyen, D. C. (1984) Induction of specific Escherichia coli genes by sublethal treatments with alkylating agents. Proc. Natl Acad. Sei. USA, 81, 4110–4114.Google Scholar
  335. Wade, M. H. and Chu, E. H. Y. (1979) Effects of DNA damaging agents on cultured fibroblasts derived from patients with Cockayne’s syndrome. Mutation Res., 59, 49–60.Google Scholar
  336. Wagner, R. and Meselson, M. (1976) Repair tracts in mismatched DNA heteroduplexes. Proc. Natl Acad. Sei. USA, 73, 4135–4139.Google Scholar
  337. Wahl, G. ML, Hughes, S. H. and Capecchi, I. R. (1974) Immunological characterization of hypoxanthine-guanine phosphoribosyl transferase mutants of mouse L cells. Evidence for mutations at different loci in the HGPRT gene. J. Cell. Physiol., 85, 307 — 320.Google Scholar
  338. Waldstein, E. A., Cao, E. H. and Setlow, R. B. (1982) Adaptive resynthesis of O6–methylguanine-accepting protein can explain the differences between mammalian cells proficient and deficient in methyl excision repair. Proc. Natl Acad. Sei. USA, 79, 5117–5121.Google Scholar
  339. Walker, G. C. (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev., 48, 60–93.Google Scholar
  340. Weigle, J. J. (1953) Induction of mutation in a bacterial virus. Proc. Natl Acad. Sei. USA, 39, 628–636.Google Scholar
  341. West, S. C. and Howard-Flanders, P. (1984) Duplex-duplex interactions catalysed by RecA protein allow strand exchanges to pass double-strand breaks in DNA. Cell, 37, 683–691.Google Scholar
  342. West, S. C., Countryman, J. K. and Howard-Flanders, P. (1983) Enzymatic formation of biparental figure eight molecules from plasmid DNA and their resolution in E. coli. Cell, 32, 817–829.Google Scholar
  343. White, R. and Fox, M. S. (1974) On the molecular basis of high negative interference. Proc. Natl Acad. Sei. USA, 71, 1544–1548.Google Scholar
  344. Wilcox, D. R. and Prakash, L. (1981) Incision and postincision steps of pyrimidine dimer removal in excision-defective mutants of Saccharomyces cerevisiae. J. Bacteriol., 148, 618–623.Google Scholar
  345. Wildenberg, J. and Meselson, M. (1976) Mismatch repair in heteroduplex DNA. Proc. Natl Acad. Sei. USA, 72, 2202–2206.Google Scholar
  346. Wilson, J. H. (1977) Genetic analysis of host range mutant viruses suggests an uncoating defect in simian virus 40-resistant monkey cells. Proc. Natl Acad. Sei. USA, 74, 3503–3507.Google Scholar
  347. Wilson, V. L. and Jones, P. A. (1983) Inhibition of DNA methylation by chemical carcinogens in vitro. Cell, 32, 239–246.Google Scholar
  348. Witkin, E. M. (1967) Mutation proof and mutation prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp. Biol., 20, 17–55.Google Scholar
  349. Witkin, E. M. (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev., 40, 869–907.Google Scholar
  350. Witkin, E. M. and George, D. L. (1973) Ultraviolet mutagenesis in polA and uvrA polA derivatives of Escherichia coli B/r: Evidence for an inducible error-prone repair system. Genetics Suppl., 73, 91–108.Google Scholar
  351. Witkin, E. M. and Kogoma, T. (1984) Involvement of the activated form of RecA protein in SOS mutagenesis and stable replication in Escherichia coli. Proc. Natl Acad. Sei. USA, 81, 7539–7543.Google Scholar
  352. Wood, R. D. and Hutchinson, F. (1984) Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. J. Mol. Biol., 173, 293–305.Google Scholar
  353. Wood, R. D., Skopek, T. R. and Hutchinson, F. (1984) Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light. J. Mol. Biol., 173, 273–291.Google Scholar
  354. Woodhead, A. D., Setlow, R. B. and Grist, E. (1980) DNA repair and longevity in three species of cold-blooded vertebrates. Exp. Gerontol., 15, 301–304.Google Scholar
  355. Wright, S. J. L. and Hill, E. C. (1968) The development of radiation-resistant cultures of Escherichia coli by a process of ’growth-irradiation cycles’. J. Gen. Microbiol., 51, 97–106.Google Scholar
  356. Yamamoto, K., Satake, M. and Shinagawa, H. (1984) A multicopy phr-plasmid increases the ultraviolet resistance of a recA strain of Escherichia coli. Mutation Res., 131, 11–18.Google Scholar
  357. Yarosh, D. B., Foote, R. S., Mitra, S. and Day, R. S. (1983) Repair of O6- methylguanine in DNA by demethylation is lacking in mer-human-tumour cell strains. Carcinogenesis, 4, 199–205.Google Scholar
  358. Young, C. S. H. and Fisher, P. B. (1980) Adenovirus recombination in normal and repair-deficient human fibroblasts. Virology, 100, 179–184.Google Scholar
  359. Youngs, D. A. and Smith, K. C. (1977) The involvement of polynucleotide ligase in the repair of UV induced DNA damage in Escherichia coli K-12 cells. Mol. Gen. Genet., 152, 37–41.Google Scholar
  360. Zurcher, C., van Zwieten, M. J., Solleveld, H. A. and Hollander, C. F. (1982) Ageing research. In The Mouse in Biomedical Research, IV (eds H. L. Foster, J. D. Small and J. G. Fox ), Academic Press, New York, pp. 11–35.Google Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations