Advertisement

DNA replication fidelity and base mispairing mutagenesis

Chapter

Abstract

Central to understanding evolution and to unravelling the complex relationships connecting mutagenesis to ageing and cancer is an appreciation of processes designed to maintain the integrity of genetic information. It is reasonable to begin addressing these processes by directing one’s attention initially to a simple class of mutations. It will be our main purpose in this chapter to focus upon the events leading to the formation of single base-pair purine- pyrimidine mismatches and their subsequent partial elimination from DNA. Single base mismatches in DNA can occur spontaneously and by exposure of a cell to certain groups of mutagenic agents.

Keywords

Exonuclease Activity Free Energy Difference Discrimination Model Template Base dNTP Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Morris, C. F., Mace, D., Sinha, N., Bittner, M. and Moran, L. (1975) Reconstruction of the T4 bacteriophage DNA replication apparatus from purified components. In DNA Synthesis and Its Regulation, ICN-UCLA Symposium on Molecular and Cellular Biology (eds M. Goulian, P. Hanawalt and C. F. Fox), Vol. 3, W. A. Benjamin, Inc., MenloPark, pp. 241–269.Google Scholar
  2. Bernardi, F., Saghi, M., Dorizzi, M. and Ninio, J. (1979) A new approach to DNA polymerase kinetics. J. Mol Biol, 129, 93–112.CrossRefGoogle Scholar
  3. Bernstein, C., Bernstein, H., Mufti, S. and Strom, B. (1972) Stimulation of mutation in phage T4 by lesions in gene 32 and by thymidine imbalance. Mutat. Res., 16, 113–119.Google Scholar
  4. Bessman, M. J. and Reha-Krantz, L. J. (1977) Studies on the biochemical basis of spontaneous mutation V. Effects of temperature on mutation frequency. J. Mol. Bio,. l116, 115–123.Google Scholar
  5. Bessman, M. J., Muzyczka, N., Goodman, M. F. and Schnaar, R. L. (1974) Studies on the biochemical basis of spontaneous mutation II. The incorporation of a base and its analogue into DNA by wild-type, mutator, and antimutator DNA polymerases. J. Mol Biol, 88, 409–421.CrossRefGoogle Scholar
  6. Borer, P. N., Dengler, B., Tinoco Jr, I. and Uhlenbeck, O. C. (1974) Stability of ribonucleic acid double-stranded helices. J. Mol Biol, 86, 843–853.CrossRefGoogle Scholar
  7. Brutlag, D. and Kornberg, A. (1972) Enzymatic synthesis of deoxyribonucleic acid, XXXVI. A proofreading function for the 3′ → 5′ exonuclease activity in deoxyribo¬nucleic acid polymerases. J. Biol Chem., 247, 241–248.Google Scholar
  8. Clayton, L. K., Goodman, M. F., Branscomb, E. W. and Galas, D. J. (1979) Error induction and correction by mutant and wild type T4 DNA polymerases. J. Biol Chem., 254, 1902–1912.Google Scholar
  9. Coulondre, C., Miller, J. H., Farabaugh, P. J. and Gilbert, W. (1979) Molecular basis of base substitution hotspots. In Escherichia coli. Nature, 274, 775–780.Google Scholar
  10. DiFrancesco, R., Bhatnagar, S. K., Brown, A. and Bessman, M. J. (1984) The interaction of DNA polymerase III and the product of the Escherichia coli mutator gene, mutD. J. Biol Chem., 259, 5567–5573.Google Scholar
  11. Drake, J. W. (1969) Comparative rates of spontaneous mutation. Nature, 221, 1132.CrossRefGoogle Scholar
  12. Drake, J. W. and Allen, E. F. (1968) Antimutagenic DNA polymerases of bacterio- phage T4. Cold Spring Harbor Symp. Quant. Biol., 33, 339–344.Google Scholar
  13. Drake, J. W., Allen, E. F., Forsberg, S. A., Preparata, R. and Greening, E. O. (1969) Spontaneous mutation. Genetic control of mutation rates in bacteriophage T4. Nature, 221, 1128–1131.CrossRefGoogle Scholar
  14. Echols, H., Lu, C. and Burgers, P. M. J. (1983) Mutator strains of Escherichia coli, mutD and dnaQ, with defective exonucleolytic editing by DNA polymerase HI holoenzyme. Proc. Natl Acad. Sci. USA, 80, 2189–2192.CrossRefGoogle Scholar
  15. Fersht, A. R. (1979) Fidelity of replication of phage 0X174 DNA by DNA polymerase III holoenzyme; spontaneous mutation by misincorporation. Proc. Natl Acad. Sci. USA, 76, 4946–4950.CrossRefGoogle Scholar
  16. Fisher, P. A., Wang, T. S.-F. and Korn, D. (1979) Enzymological characterization of DNA polymerase a. J. Biol. Chem., 254, 6128–6137.Google Scholar
  17. Freese, E. (1959) The specific mutagenic effect of base analogues on phage T4. J. Mol. Biol., 1, 87–105.CrossRefGoogle Scholar
  18. Freese, E. B. and Freese, E. F. (1967) On the specificity of DNA polymerase. Proc. Natl Acad. Sci. USA, 57, 650–657.CrossRefGoogle Scholar
  19. Galas, D. J. and Branscomb, E. W. (1978) Enzymatic determinants of DNA polymerase accuracy: theory of coliphage T4 polymerase mechanisms. J. Mol. Biol., 124, 653–687.CrossRefGoogle Scholar
  20. Glickman, B. W. and Radman, M. (1980) Escherichia coli mutator mutants deficient in methylation - instructed DNA mismatch correction, Proc. Natl Acad. Sci. USA, 77, 1063–1067.CrossRefGoogle Scholar
  21. Goodman, M. F. and Ratliff, R. L. (1983) Evidence of 2-aminopurine • cytosine base mispairs involving two hydrogen bonds. J. Biol. Chem., 258, 12 842–12 846.Google Scholar
  22. Goodman, M. F., Hopkins, R. and Gore, W. C. (1977) 2-Aminopurine-induced mutagenesis in T4 bacteriophage: a model relating mutation frequency to 2-aminopurine incorporation in DNA. Proc. Natl Acad. Sci. USA, 74, 4806–4810.Google Scholar
  23. Goodman, M. F., Watanabe, S. M. and Branscomb, E. W. (1982) Passive polymerase control of DNA replication fidelity: evidence against unfavored tautomer involvement in base transition mutations. In Molecular and Cellular Mechanisms of Mutagenesis (eds J. F. Lemontt and W. M. Generoso ), Plenum Press, New York, pp. 213–229.Google Scholar
  24. Goodman, M. F., Gore, W. C., Muzyczka, N. and Bessman, M. J. (1974) Studies on the biochemical basis of spontaneous mutation III. Rate model for DNA polymerase-effected nucleotide misincorporation. J. Mol. Biol., 88, 423–435.CrossRefGoogle Scholar
  25. Goodman, M. F., Keener, S., Guidotti, S. and Branscomb, E. W. (1983) On the enzymatic basis for mutagenesis by manganese. J. Biol. Chem., 258, 3469–3475.Google Scholar
  26. Goodman, M. F., Hopkins, R. L., Watanabe, S. M., Clayton, L. K. and Guidotti, S. (1980) On the molecular basis of mutagenesis: enzymological and genetic studies with the bacteriophage T4 system. In Mechanistic Studies of DNA Replication and Genetic Recombination, ICN-UCLA Symposia on Molecular and Cellular Biology (eds B. Alberts and C. F. Fox ), Vol. XIX, Academic Press, New York, pp. 685–705.Google Scholar
  27. Hershfield, M. S. (1973) On the role of deoxyribonucleic acid polymerase in determining mutation rates. J. Biol. Chem., 248, 1417–1423.Google Scholar
  28. Hibner, U. and Alberts, B. M. (1980) Fidelity of DNA replication catalyzed in vitro on a natural DNA template by the T4 bacteriophage multi-enzyme complex. Nature, 285, 300–305.CrossRefGoogle Scholar
  29. Hopfield, J. J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sei. USA, 71, 4135–4139.CrossRefGoogle Scholar
  30. Hopfield, J. J. (1980) The energy relay: a proofreading scheme based on dynamic cooperativity and lacking in all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc. Natl Acad. Sei. USA, 77, 5248–5252.CrossRefGoogle Scholar
  31. Hopkins, R. and Goodman, M. F. (1979) Asymmetry in forming 2-aminopurine. Hydroxymethylcytosine heteroduplexes; a model giving misincorporation fre-quencies and rounds of DNA replication from base-pair populations in vivo. J. Mol. Biol., 135, 1–22.CrossRefGoogle Scholar
  32. Hopkins, R. and Goodman, M. F. (1980) Deoxyribonucleotide pools, base pairing and sequence configuration affecting bromodeoxyuridine- and 2-aminopurine-induced mutagenesis. Proc. Natl Acad. Sei. USA, 77, 1801–1805.CrossRefGoogle Scholar
  33. Hopkins, R. L. and Goodman, M. F. (1985) Ribonucleoside and deoxyribonucleoside triphosphate pools during 2-aminopurine mutagenesis in T4 mutator, wild type, and antimutator infected Escherichia coli cells. J. Biol. Chem., 260, 6618–6622.Google Scholar
  34. Janion, C. and Shugar, D. (1973) Preparation and properties of poly 2-aminopurine ribotidylic acid. Acta Biochimica Polonica,271–284.Google Scholar
  35. Katritzky, A. R. and Waring, A. J. (1962) Tautomeric azines. I. Tautomerism of 1-methylarocil and 5-bromo-l-methyluracil. J. Chem. Soc., Part 2, 1540–1544.Google Scholar
  36. Koch, R. E. (1971) The influence of neighboring base pairs upon base-pair substitution mutation rates. Proc. Natl Acad. Sei. USA, 68, 773–776.CrossRefGoogle Scholar
  37. Koch, A. L. and Miller, C. (1965) A mechanism for keeping mutations in check. J. Theoret. Biol., 8, 17–80.CrossRefGoogle Scholar
  38. Kornberg, A. (1974) DNA Synthesis, W. H. Freeman and Company, San Francisco, pp. 85.Google Scholar
  39. Kornberg, A. (1980) DNA Replication, W. H. Freeman and Company, San Francisco, Chapters 4 and 5.Google Scholar
  40. Liu, C. C., Burke, R. L., Hibner, U., Barry, J. and Alberts, B. M. (1978) Probing DNA replication mechanisms with the T4 bacteriophage in vitro system. Cold Spring Harbor Symp. Quant. Biol., 43, 469–487.Google Scholar
  41. Loeb, L. A., Dube, D. K., Beckman, R. A., Koplitz, M. and Gopinathan, K. P. (1981) On the fidelity of DNA replication: nucleoside monophosphate generation during polymerization. J. Biol. Chem., 256, 3978–3987.Google Scholar
  42. Mathews, C. K., North, T. H. and Reddy, G. P. V. (1979) Multienzyme complexes in DNA precursor biosynthesis. In Advances In Enzyme Regulation (ed. G. Weber), Vol. 17, Pergamon Press, Oxford, pp. 133–156.Google Scholar
  43. Mhaskar, D. N. and Goodman, M. F. (1984) On the molecular basis of transition mutations: frequency of forming 2-aminopurine • cytosine base mispairs in the G C → A• T mutational pathway by T4 DNA polymerase in vitro. J. Biol. Chem., 259, 11713–11717.Google Scholar
  44. Mufti, S. (1979) Mutator effects of alleles of phage T4 genes 32, 41, 44, and 45 in the presence of an antimutator polymerase. Virology, 94, 1–9.CrossRefGoogle Scholar
  45. Muzyczka, N., Poland, R. L. and Bessman, M. J. (1972) Studies on the biochemical basis of spontaneous mutation I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J. Biol. Chem., 247, 7116–7122.Google Scholar
  46. Nevers, P. and Spatz, H.-C. (1975) Escherichia coli mutants uvr D and uvr E deficient in gene conversion of X-heteroduplexes. Molec. Gen. Genet., 139, 233–243.Google Scholar
  47. Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–595.Google Scholar
  48. Nossal, N. G. (1979) DNA Replication with bacteriophage T4 proteins. J. Biol. Chem., 254, 6026–6031.Google Scholar
  49. Nossal, N. G. and Hershfield, M. S. (1973) Exonuclease activity of wild type and mutant T4 DNA polymerases: hydrolysis during DNA synthesis in vitro. In DNA Synthesis In Vitro (eds R. D. Wells and R. B. Inman ), University Park Press, Baltimore, pp. 47–62.Google Scholar
  50. Nossal, N. G. and Hershfield, M. S. (1973) Exonuclease activity of wild type and mutant T4 DNA polymerases: hydrolysis during DNA synthesis in vitro. In DNA Synthesis In Vitro (eds R. D. Wells and R. B. Inman), University Park Press, Baltimore, pp. 47-62.Google Scholar
  51. Petruska, J. and Goodman, M. F. (1985) Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity. J. Biol. Chem., 260, 7533–7539.Google Scholar
  52. Pless, R. C. and Bessman, M. J. (1983) Influence of local nucleotide sequence on substitution of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Biochemistry, 22, 4905-4915.Google Scholar
  53. Pless, R. C. and Bessman, M. J. (1983) Influence of local nucleotide sequence on substitution of 2-aminopurine for adenine during deoxyribonucleic acid synthesis in vitro. Biochemistry, 22, 4905–4915.CrossRefGoogle Scholar
  54. Radman, M., Wagner, R. E., Jr, Glickman, B. W. and Meselson, M. (1980) DNA methylation, mismatch correction and genetic stability. In Progress In Environ-mental Mutagenesis (ed. M. Alacevic ), Elsevier North Holland Bio Medical Press, Amsterdam, pp. 121–130.Google Scholar
  55. Reddy, G. P. V. and Pardee, A. B. (1980) Multienzyme complex for metabolic channeling in mammalian DNA replication. Proc. Natl Acad. Sei. USA, 77, 3312–3316.CrossRefGoogle Scholar
  56. Reha-Krantz, L. J. and Bessman, M. J. (1981) Studies on the biochemical basis of spontaneous mutation VI. Selection and characterization of a new bacteriophage T4 mutator DNA polymerase. J. Mol. Biol., 145, 677–695.CrossRefGoogle Scholar
  57. Ronen, A. (1979) 2-Aminopurine. Mutat. Res., 75, 1–47.Google Scholar
  58. Ronen, A. and Rahat, A. (1976) Mutagen specificity and position effects on mutation in T4 rll nonsense sites. Mutat. Res., 34, 21–34.CrossRefGoogle Scholar
  59. Ronen, A., Rahat, A. and Halevy, C. (1976) Marker effects on reversion of T4 rll mutants. Genetics, 84, 423–436.Google Scholar
  60. Rydberg, B. (1977) Bromouracil mutagenesis in Escherichia coli evidence for involvement of mismatch repair. Molec. Gen. Genet., 152, 19–28.CrossRefGoogle Scholar
  61. Rydberg, B. (1978) Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutat. Res., 52, 11–24.Google Scholar
  62. Schekman, R., Wickner, A. and Kornberg, A. (1974) Multienzyme systems of DNA replication. Science, 186, 987–993.CrossRefGoogle Scholar
  63. Scheuermann, R. H. and Echols, H. (1984) A separate editing exonuclease for DNA replication: the e-subunit of Escherichia coli DNA polymerase III holoenzyme. Proc. Natl Acad. Sei. USA, 81, 7747–7751.CrossRefGoogle Scholar
  64. Sedwick, W. D., Wang, T. S.-F. and Korn, D. (1975) ‘Cytoplasmic’ deoxyribonucleic acid polymerase. J. Biol. Chem., 250,7045–7056.Google Scholar
  65. Speyer, J. F. (1965) Mutagenic DNA polymerase. Biochem. Biophys. Res. Commun., 21, 6–8.CrossRefGoogle Scholar
  66. Speyer, J. F., Karam, J. D. and Lenny, A. B. (1966) On the role of DNA polymerase in base selection. Cold Spring Harbor Symp. Quant. Biol., 31, 693–697.Google Scholar
  67. Tomich, P. K., Chiu, C. S., Wovcha, M. G. and Greenberg, G. R. (1974) Evidence for a complex regulating the in vivo activities of early enzymes induced by bacteriophageT4. J. Biol. Chem., 249, 7613–7622.Google Scholar
  68. Topal, M. D. and Fresco, J. R. (1976) Complementary base pairing and the origin of substitution mutations. Nature, 263, 285–289.CrossRefGoogle Scholar
  69. Topal, M. D., DiGiuseppi, R. and Sinha, N. K. (1980) Molecular basis for substitution mutations. J. Biol. Chem., 255, 11717–11724.Google Scholar
  70. Wagner, R., Jr and Meselson, M. (1976) Repair tracts in mismatched DNA heteroduplexes. Proc. Natl Acad. Sci. USA, 73, 4135–4139.CrossRefGoogle Scholar
  71. Wang, M.-L. J., Stellwagen, R. H. and Goodman, M. F. (1981) Evidence for the absence of DNA proofreading in He La cell nuclei. J. Biol. Chem., 256, 7097–7100.Google Scholar
  72. Watanabe, S. M. and Goodman, M. F. (1978) Mutator and antimutator phenotypes of suppressed amber mutants in genes 32, 41, 44, 45, and 62 in bacteriophage T4. J. Virol., 25, 73–77.Google Scholar
  73. Watanabe, S. M. and Goodman, M. F. (1981) On the molecular basis of transition mutations: the frequencies of forming and 2-aminopurine • cytosine adenine • cyto- sine base mispairs in vitro. Proc. Natl Acad. Sci. USA, 78, 2864–2868.CrossRefGoogle Scholar
  74. Watanabe, S. M. and Goodman, M. F. (1982) Kinetic measurement of 2-aminopurine • cytosine and 2-aminopurine • thymine base pairs as a test of DNA polymerase fidelity mechanisms. Proc. Natl Acad. Sci. USA, 79, 6429–6433.CrossRefGoogle Scholar
  75. Watson, J. D. and Crick, F. H. C. (1953a) Genetical implications of the structure of deoxyribonucleic acid. Nature, 171, 964–967.CrossRefGoogle Scholar
  76. Watson, J. D. and Crick, F. H. C. (1953b) The structure of DNA. Cold Spring Harbor Symp. Quant. Biol., 18, 123–131.Google Scholar
  77. Weissbach, A. (1977) Eucaryotic DNA polymerases. Annu. Rev. Biochem., 46, 25–47.CrossRefGoogle Scholar
  78. Wickner, S. and Hurwitz, J. (1976) Involvement of Escherichia coli dna Z gene product in DNA elongaton in vitro. Proc. Natl Acad. Sci. USA, 73, 1053–1057.CrossRefGoogle Scholar
  79. Wolfenden, R. V. (1969) Tautomeric equilibria in inosine and adenosine. J. Mol. Biol., 40, 307–310.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations