The accuracy of RNA synthesis



For the normal metabolism of cells it is essential to transfer the genetic information contained in a DNA sequence into an RNA molecule. In order for the information to be faithfully expressed, the DNA sequence must be accurately transcribed and the primary RNA product molecule must be correctly processed and modified in order to produce a tRNA, mRNA, rRNA or other mature RNA.


Splice Site Splice Junction Aberrant Splice Nonsense Codon Splice System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, S. S., Dube, D. K. and Loeb, L. A. (1979) On the fidelity of DNA replication: accuracy of Escherichia coli DNA polymerase I. J. Biol. Chem., 254, 101–106.Google Scholar
  2. Agris, P. F. and Soil, D. (1977) The modified nucleosides in transfer RNA. In Nucleic Acid-Protein Recognition (ed. H. J. Vogel ), Academic Press, New York, pp. 321–344.Google Scholar
  3. Altman, S. (1981) Transfer RNA processing enzymes. Cell, 23, 3–4.CrossRefGoogle Scholar
  4. Awedimento, U. E., Vogeli, G., Yamada, Y., Maizel, J. V., Pasten, I. and deCombrugghe, B. (1980) Correlation between splicing sites within an intron and their sequence complementarity with U1 RNA. Cell, 21, 689–696.CrossRefGoogle Scholar
  5. Baker, C. C. and Ziff, E. B. (1981) Promoters and heterogeneous 5′ termini of the messenger RNAs of adenovirus serotype 2. J. Mol. Biol., 149, 189–221.CrossRefGoogle Scholar
  6. Bass, I. A. and Polonsky, Jr, S. (1974) On the fidelity of in vitro polynucleotide synthesis by E. coli RNA polymerase. FEBS Lett., 48, 306–309.Google Scholar
  7. Batschelet, E., Domingo, E. and Weissmann, C. (1976) The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1, 27–32.CrossRefGoogle Scholar
  8. Berget, S. M. (1984) Are U4 small nuclear ribonucleoproteins involved in poly- adenylation? Nature, 309, 179–181.CrossRefGoogle Scholar
  9. Bertrand, Kl, Korn, L. J., Lee, F. and Yanofsky, C. (1977) The attenuator of the tryptophan operon of Escherichia coli. Heterogeneous 3′-OH termini in vivo and deletion mapping of functions. J. Mol Biol., 117, 227–247.CrossRefGoogle Scholar
  10. Bick, M. D. (1975) Misincorporation of GTP during transcription of poly dAT-dAT and poly dABU-dABU. Nucl. Acids Res., 2, 1513–1523.CrossRefGoogle Scholar
  11. Bogenhagen, D. F. and Brown, D. D. (1981) Nucleotide sequences in Xenopus 5S DNA required for transcription termination. Cell, 24, 261–270.CrossRefGoogle Scholar
  12. Bouadloun, F., Donner, D. and Kurland, C. G. (1983) Codon-specificmissense errors in vivo. EMBO J., 2, 1351–1356.Google Scholar
  13. Busslinger, M., Moschonas, N. and Flavell, R. A. (1981) β+ Thalassemia: Aberrant splicing results from a single point mutation in an intron. Cell, 27, 289–298.Google Scholar
  14. Carpousis, A. J., Stefano, J. E. and Gralla, J. D. (1982) 5′ nucleotide heterogeneity and altered initiation of transcription at mutant lac promoters. J. Mol. Biol., 157, 619–633.Google Scholar
  15. Chamberlain, M. and Berg, P. (1964) Mechanism of RNA polymerase action: Characterization of the DNA-dependent synthesis of poly adenylic acid. J. Mol. Biol., 8, 708–726.CrossRefGoogle Scholar
  16. Contreras, R. and Fiers, W. (1981) Initiation of transcription by RNA polymerase II in permeable, SV40-infected or noninfected, CV1 cells; evidence for multiple promoters of SV40 late transcription. Nucl. Acids Res., 9, 215–236.CrossRefGoogle Scholar
  17. Cozzarelli, N. R., Gerrard, S. P., Schiissel, M., Brown, D. D. and Bogenhagen, D. F. (1983) Purified RNA polymerase III accurately and efficiently terminates tran-scription of 5S RNA genes. Cell, 34, 829–835.CrossRefGoogle Scholar
  18. Davidson, E. H. and Britten, R. J. (1979) Regulation of gene expression: Possible role of repetitive sequences. Science, 204, 1052–1059.CrossRefGoogle Scholar
  19. Denis, H. and Wegnez, M. (1973) Recherche biochimiques sur l’oogenèse. 7. Synthèse et maturation du RNA 5S dans les petit oocytes de Xenopus laevis. (Biochemical research on oogenesis. 7. Synthesis and maturation of 5S RNA in the small oöcytes of Xenopus laevis.) Biochimie, 55, 1137–1151.CrossRefGoogle Scholar
  20. Domingo, E., Flavell, R. A. and Weissmann, C. (1976) In vitro site-directed mutagenesis: Generation and properties of and infectious extracistronic mutant of bacteriophage Qß. Gene, 1, 3–25.Google Scholar
  21. Donaldson, D. S., McNab, A. R., Rovera, G. and Curtis, P. J. (1982) Nuclear precursor molecules of the two β-globin mRNAs in Friend erythroleukemia cells. J. Biol. Chem., 257, 8655–8660.Google Scholar
  22. Edelmann, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell, 10, 131–137.Google Scholar
  23. Ellis, N. and Gallant, J. (1982) An estimate of the global error frequency in translation. Mol. Gen. Genet., 188, 169–172.CrossRefGoogle Scholar
  24. Farnham, P. J. and Platt, T. (1980) A model for transcription termination suggested by studies on the trp attenuator in vitro using base analogs. Cell, 20, 739–748.CrossRefGoogle Scholar
  25. Felber, B. K., Orkin, S. H. and Hamer, D. H. (1982) Abnormal RNA splicing causes one form of a thalassemia. Cell, 29, 895–902.CrossRefGoogle Scholar
  26. Fitzgerald, M. and Shenk, T. (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polyadenylation of late SV40 mRNAs. Cell, 24, 251–260.CrossRefGoogle Scholar
  27. Fluck, M. M. and Epstein, R. H. (1980) Isolation and characterization of context mutations affecting the supressibility of nonsense mutations. Mol. Gen. Genet., 177, 615–627.Google Scholar
  28. Fluck, M. M., Salser, W. and Epstein, R. H. (1977) The influence of the reading context upon the suppression of nonsense codons. Mol. Gen. Genet., 151, 137–149.CrossRefGoogle Scholar
  29. Ford, J. P. and Hsu, M. T. (1978) Transcription pattern of in vivo labeled late SV40 RNA. J. Virol., 28, 795–801.Google Scholar
  30. Fraser, N. W. and Hsu, M.-T. (1980) Mapping of the 3′ terminus of the large late Ad-2 transcript by electron microscopy. Virology, 103, 514–516.CrossRefGoogle Scholar
  31. Fraser, N. W., Nevins, J. R., Ziff, E. and Darnell, J. E. (1979) The major late adenovirus type-2 transcription unit: Termination is downstream from the last poly (A) site. J. Mol. Biol., 129, 643–656.CrossRefGoogle Scholar
  32. Fukumaki, Y., Ghosh, P. K., Benz, E. J., Reddy, V. B., Lebowitz, P., Forget, B. G. and Weissman, S. M. (1982). Abnormally spliced messenger RNA in erythroid cells from patients with β+ thalassemia and monkey cells expressing a cloned β+-thalassemic gene. Cell, 28, 585–593.CrossRefGoogle Scholar
  33. Gidoni, D., Kahana, C., Canaani, D. and Groner, Y. (1981) Specific in vitro initiation of transcription of simian virus 40 early and late genes occurs at the various cap nucleotides including cytidine. Proc. Natl Acad. Sci. USA, 78, 2174–2178.CrossRefGoogle Scholar
  34. Goldsmith, M. E., Humphries, R. K., Ley, T., Cline, A., Kan tor, J. A. and Nienhuis, A. W. (1983) ‘Silent’ nucleotide substitution in a β+-thalassemia globin gene activates splice site in coding sequence RNA. Proc. Natl Acad. Sci. USA, 80, 2318–2322.Google Scholar
  35. Gurdon, J. B. and Brown, D. D. (1978) The transcription of 5S DNA injected into Xenopus laevis oocytes. Develop. Biol., 67, 346–356.Google Scholar
  36. Hagenbiichle, O. and Schibler, U. (1981) Mouse β-globin and adenovirus-2 major late transcripts are initiated at the cap site in vitro. Proc. Natl Acad. Sci. USA, 78, 2283–2286.CrossRefGoogle Scholar
  37. Higgs, D. R., Goodbourn, S. E. Y., Lamb, J., Clegg, J. D. and Weatherall, D. J. (1983) a-Thalassaemia caused by a polyadenylation signal mutation. Nature, 306, 398–400.Google Scholar
  38. Hofer, E. and Darnell, J. E. (1981) The primary transcription unit of the mouse β-major globin gene. Cell, 23, 585–593.CrossRefGoogle Scholar
  39. Hofer, E., Hofer-Warbinek, R. and Darnell, J. E. (1982) Globin RNA transcription: a possible termination site and demonstration of transcriptional control correlated with altered chromatin structure. Cell, 29, 887–893.CrossRefGoogle Scholar
  40. Holmes, W. M., Piatt, T. and Rosenberg, M. (1983) Termination of transcription in E. coli. Cell, 32, 1029–1032.Google Scholar
  41. Hopfield, J. J. (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.CrossRefGoogle Scholar
  42. Johnston, T. C., Borgia, P. T. and Parker, J. (1984) Codon specificity of starvation induced misreading. Mol. Gen. Genet., 195, 459–465.CrossRefGoogle Scholar
  43. King, C. R. and Piatigorsky, J. (1984) Alternative splicing of aA-crystallin RNA: structural and quantitative analyses of the mRNAs for the OLAT- and aAins-cry stall in polypeptides. Biol. Chem., 259, 1822–1826.Google Scholar
  44. Krainer, A. R., Maniatis, T., Ruskin, B. and Green, M. R. (1984) Normal and mutant human β-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell, 36, 993–1005.Google Scholar
  45. Krämer, A., Keller, W., Appel, B. and Lührmann, R. (1984) The 5′ terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell, 38, 299–307.CrossRefGoogle Scholar
  46. Krieg, P. A. and Melton, D. A. (1984) Formation of the 3′ end of histone mRNA by post-transcriptional processing. Nature, 308, 203–206.CrossRefGoogle Scholar
  47. Kröger, M. and Singer, B. (1979) Ambiguity and transcriptional errors as a result of methylation of N-l of purines and N-3 of pyrimidines. Biochemistry, 18, 3493–3500.CrossRefGoogle Scholar
  48. Kühne, T., Wieringa, B., Reiser, J. and Weissmann, C. (1983) Evidence against a scanning model of RNA splicing. EMBO J., 2, 727–733.Google Scholar
  49. Lang, K. M. and Spritz, R. A. (1983) RNA splice site selection: Evidence for a 5′ → 3′ scanning model. Science, 220, 1351–1355.CrossRefGoogle Scholar
  50. Lee, F., Squires, C. L., Squires, C. and Yanofsky, C. (1976) Termination of transcription in vitro in the Escherichia coli tryptophan operon leader region. J. Mol. Biol., 103, 383–393.CrossRefGoogle Scholar
  51. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. and Steitz, J. A. (1980) Are snRNPs involved in splicing? Nature, 283, 220–224.CrossRefGoogle Scholar
  52. Lewin, B. (1980) Alternatives for splicing: Recognizing the ends of introns. Cell, 22, 324–326.CrossRefGoogle Scholar
  53. Loeb, L. A. and Kunkel, T. A. (1982) Fidelity of DNA synthesis. Ann. Rev. Biochem., 52, 429–457.CrossRefGoogle Scholar
  54. Loftfield, R. and Vanderjagt, D. (1972) The frequency of errors in protein synthesis. Biochem. J., 128, 1353–1356.Google Scholar
  55. MacCumber, M. and Ornstein, R. L. (1984) Molecular model for messenger RNA splicing. Science, 224, 402–405.CrossRefGoogle Scholar
  56. Maizels, N. M. (1973) The nucleotide sequence of the lactose messenger ribonucleic acid transcribed from the UV5 promoter mutant of Escherichia coli. Proc. Natl Acad. Sci. USA, 70, 3585–3589.CrossRefGoogle Scholar
  57. Majors, J. (1975) Initiation of an in vitro mRNA synthesis from the wild-type lac promoter. Proc. Natl Acad. Sci. USA, 72, 4394–4398.CrossRefGoogle Scholar
  58. Martin, F. and Tinoco, I. (1980) DNA-RNA hybrid duplexes containing (dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucl. Acids Res., 8, 2295–3000.CrossRefGoogle Scholar
  59. McDevitt, M. A., Imperiale, M. J., Ali, H. and Nevins, J. R. (1984) Requirement of a downstream sequence for generation of a poly (A) addition site. Cell, 37, 993–999.CrossRefGoogle Scholar
  60. Montell, C., Fisher, E. F., Caruthers, M. H. and Berk, A. J. (1983) Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3′ consensus sequence AAUAAA. Nature, 305, 600–605.CrossRefGoogle Scholar
  61. Moore, C. L. and Sharp, P. A. (1984) Site-specific polyadenylation in a cell-free reaction. Cell, 36, 581–591.CrossRefGoogle Scholar
  62. Mount, S. M. (1982) A catalogue of splice junction sequences. Nucl. Acids Res., 10, 459–472.CrossRefGoogle Scholar
  63. Murray, V. and Holliday, R. (1979a) Mechanism for RNA splicing of gene transcripts. FEBS Letts, 106, 5–7.CrossRefGoogle Scholar
  64. Murray, V. and Holliday, R. (1979b) A mechanism for RNA-RNA splicing and a model for the control of gene expression. Genet. Res., 34, 173–188.CrossRefGoogle Scholar
  65. Nevins, J. R. (1983) The pathway of eukaryotic mRNA formation. Ann. Rev. Biochem., 52, 441–466.CrossRefGoogle Scholar
  66. Nevins, J. R., Blanchard, J. M. and Darnell, J. E. (1980) Transcription units of adenovirus type 2: Termination of transcription beyond the poly (A) addition site in early regions 2 and 4. J. Mol. Biol., 144, 377–386.CrossRefGoogle Scholar
  67. Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587– 595.CrossRefGoogle Scholar
  68. Ozoline, O. N., Oganesjan, M. G. and Kamzolova, S. G. (1980) On the fidelity of transcription of Escherichia coli RNA polymerase. FEBS Letts, 110, 123–125.CrossRefGoogle Scholar
  69. Padgett, R. A., Konarska, M. M., Grabowski, P. J., Hardy, S. F. and Sharp, P. A. (1984). Lariat RNAs as intermediates and products in the splicing of messenger RNA precursors. Science, 225, 898–903.CrossRefGoogle Scholar
  70. Parker, J., Johnston, T. C., Borgia, P. T., Holtz, G., Remaut, E. and Fiers, W. (1983) Codon usage and mistranslation: In vivo basal level misreading of the MS2 coat protein message. J. Biol. Chem., 258, 10007–10012.Google Scholar
  71. Price, D. H. and Parker, C. S. (1984) The 3′ end of Drosophila histone H3 mRNA is produced by a processing activity in vitro. Cell, 38, 423–429.Google Scholar
  72. Proudfoot, N. J. and Brownlee, G. G. (1976) 3′ Non-coding region sequences in eukaryotic messenger RNA. Nature, 263, 211–214.CrossRefGoogle Scholar
  73. Radding, C. M. and Kornberg, A. (1962) Enzymatic synthesis of deoxyribonucleic acid: XIII. Kinetics of primed and de novo synthesis of deoxynucleotide polymers. J. Biol. Chem., 237, 2877–2882.Google Scholar
  74. Rogers, J. and Wall, R. (1980) A mechanism for RNA splicing. Proc. Natl Acad. Sci. USA, 77, 1877–1879.CrossRefGoogle Scholar
  75. Rosenberger, R. F. and Foskett, G. (1981) An estimate of the frequency of in vivo transcriptional errors at a nonsense codon in Escherichia coli. Mol. Gen. Genet., 183, 561–563.Google Scholar
  76. Rosenberger, R. F. and Hilton, J. (1983) The frequency of transcriptional and translational errors at nonsense codons in the lacZ gene of Escherichia coli. Mol. Gen. Genet., 191, 207–212.Google Scholar
  77. Ruskin, B., Krainer, A. R., Maniatis, T. and Green, M. R. (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell, 38, 317–331.CrossRefGoogle Scholar
  78. Ryan, T. and Chamberlain, M. J. (1983) Transcriptional analyses with heteroduplex trp attenuator templates indicate that the transcript stem and loop structure serves as the termination signal. J. Biol. Chem., 258, 4690–4693.Google Scholar
  79. Salisbury, J. G., O’Conner, P. J. and Saffhill, R. (1978) Molecular size and fidelity of DNA polymerase a from the regenerating liver of the rat. Biochim. Biophys. Acta, 517, 181–185.Google Scholar
  80. Salser, W. (1977) Globin mRNA sequences: Analysis of base pairing and evolutionary implications. Cold Spring Harbor Symp. Quant. Biol., 42, 985–1002.Google Scholar
  81. Sharp, P. A. (1981) Speculations on RNA splicing. Cell, 23, 643–646.CrossRefGoogle Scholar
  82. Singer, B. and Spengler, S. (1981) Ambiguity and transcriptional errors as a result of modification of exocyclic amino groups of cytidine, guanosine, and adenosine. Biochemistry, 20, 1127–1132.CrossRefGoogle Scholar
  83. Springgate, C. F. and Loeb, L. A. (1975) On the fidelity of transcription by Escherichia coli ribonucleic acid polymerase. J. Mol. Biol., 97, 577–591.CrossRefGoogle Scholar
  84. Strniste, G. F., Smith, D. A. and Hayes, F. N. (1973) X-ray inactivation of the Escherichia coli deoxyribonucleic acid dependent ribonucleic acid polymerase in aqueous solution. II. Studies on initiation and fidelity of transcription. Biochemistry, 12, 603–608.CrossRefGoogle Scholar
  85. Tatei, K., Takemura, K., Mayeda, A., Fujiwara, Y., Tanaka, H., Ishihama, A. and Ohshima, Y. (1984) U1 RNA-protein complex preferentially binds to both 5′ and 3′ splice junction sequences in RNA or single-stranded DNA. Proc. Natl Acad. Sci. USA, 81, 6281–6285.CrossRefGoogle Scholar
  86. Tinoco, I., Borer, P. N., Dengler, B., Levine, M. D. and Oblenbeck, O. C. (1973) Improved estimation of secondary structure in ribonucleic acids. Nature, 246, 40–41.Google Scholar
  87. Treisman, R., Orkin, S. H. and Maniatis, T. (1983) Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature, 302, 501–596.CrossRefGoogle Scholar
  88. Treisman, R., Proudfoot, N. J., Shander, M. and Maniatis, T. (1982) A single-base change at a splice site in a β°-thalassemic gene causes abnormal RNA splicing. Cell, 29, 903–911.CrossRefGoogle Scholar
  89. Volloch, V. Z., Rits, S. and Tumerman, L. (1979) A possible mechanism responsible for the correction of transcription errors. Nucl. Acids Res., 6, 1535–1546.CrossRefGoogle Scholar
  90. Wieringa, B., Hofer, E. and Weissmann, C. (1984) A minimal length but no specific internal sequence is required for splicing the large rabbit β-globin intron. Cell, 37, 915–925.CrossRefGoogle Scholar
  91. Wieringa, B., Meyer, F., Reiser, J. and Weissmann, C. (1983) Unusual splice sites revealed by mutagenic inactivation of an authentic splice site of the rabbit β-globin gene. Nature, 301, 38–43.CrossRefGoogle Scholar
  92. Yang, V. W., Lerner, M. R., Steitz, J. A. and Flint, S. J. (1981) A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc. Natl Acad. Sci. USA, 78, 1371–1375.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations