The accuracy of mRNA—tRNA recognition



In order to synthesize functional proteins, mRNA must be translated by the ribosome with a certain level of accuracy. As we will discuss below, our knowledge concerning the levels of precision ultimately attained by the translational machinery, especially at the level of the nascent polypeptide chain, is still incomplete. Furthermore, it will be interesting to compare the sparse data that exist with the results of a naïve calculation of the following type: in order to synthesize correctly at least 50% of the polypeptide chains of an enzyme as large as β-galactosidase which contains 1169 amino acid residues, an average error no larger than 1 in 1700 per amino acid residue can be tolerated (Fig. 5.1). Why should attaining this level of accuracy pose a problem?


Codon Usage Synonymous Codon Usage Amino Acid Starvation Anticodon Loop Nonsense Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, A. K. (1983) The fidelity of translation. Prog. Nucl. Ac. Res. Mol. Biol., 28, 81–100.CrossRefGoogle Scholar
  2. Ames, B. N. and Hartman, P. E. (1963) The histidine operon. Cold Spring Harbor Symp. Quant. Biol., 28, 349–356.Google Scholar
  3. Anderson, S., Bankier, A. T., Barrell, B. G. etal. (1981) Sequence and organization of the human mitochondrial genome. Nature, 290, 457–464.CrossRefGoogle Scholar
  4. Andersson, D. I. and Kurland, C. G. (1983) Ram ribosomes are defective proofreaders. Mol. Gen. Genet., 191, 378–381.CrossRefGoogle Scholar
  5. Andersson, S. G. E., Buckingham, R. H. and Kurland, C. G. (1984) Does codon-anticodon composition influence ribosome functions? EMBO J., 3, 91–94.Google Scholar
  6. Atkins, J. F., Elseviers, D. and Gorini, L. (1972) Low activity of 0-galactosidase in frameshift mutants of Escherichia coli. Proc. Natl Acad. Sci. USA, 69, 1192–1195.CrossRefGoogle Scholar
  7. Atkins, J. F., Gesteland, R. F., Reid, B. R. and Anderson, C. W. (1979) Normal tRNAs promote ribosomal frame shifting. Cell, 18, 1119–1131.CrossRefGoogle Scholar
  8. Atkins, J. F., Nichols, B. P. and Thompson, S. (1983) The nucleotide sequence of the first externally suppressible —1 frameshift mutant, and of some nearly leaky frameshift mutants. EMBO J., 2, 1345–1350.Google Scholar
  9. Bare, L., Bruce, A. G., Gesteland, R. and Uhlenbeck, O. C. (1983) Uridine-33 in yeast tRNA not essential for amber suppression. Nature, 305, 554–556.CrossRefGoogle Scholar
  10. Barrell, B. G., Anderson, S., Bankier, A. T. etal. (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc. Natl Acad. Sci. USA, 77, 3164–3166.Google Scholar
  11. Beier, H., Barciszewska, M., Sickinger, H. D. (1984) The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extract. EMBO J., 3, 1091–1096.Google Scholar
  12. Bennetzen, J. L. and Hall, B. D. (1982) Codon selection in yeast. J. Biol. Chem., 257, 3026–3031.Google Scholar
  13. Berman, H. M., Marcu, D., Narayana, P., Fissekis, J. D. and Lipnick, R. L. (1978) Modified bases in transfer-RNA. Structures of 5-carbamoylmethyl uridine and 5-carboxymethyl uridine. Nucl. Acid Res., 5, 593–903.CrossRefGoogle Scholar
  14. Bienz, M. and Kubli, E. (1981) Wild-type tRNAGTyr reads the TMV-RNA stop codon, but Q base-modified tRNAQTyr does not. Nature, 294, 188–190.CrossRefGoogle Scholar
  15. Björk, G. R. (1984) Modified nucleosides in RNA: their formation and function. In Processing of RNA (ed. D. Apirion) CRC Press Inc., Boca, Raton, Florida, pp. 291–330.Google Scholar
  16. Björk, G. R. and Neidhardt, F. C. (1975) Physiological and biochemical studies on the function of 5-methyluridine in the tRNA of E. coli. J. Bacteriol., 124, 99–111.Google Scholar
  17. Bohman, K., Ruusala, T., Jelenc, P. C. and Kurland, C. G. (1984) Kinetic impairment of restrictive streptomycin resistant ribosomes. Mol. Gen. Genet., 198, 90–99.CrossRefGoogle Scholar
  18. Bonitz, S. G., Berlani, R., Coruzzi, G. etal. (1980) Codon recognition rules in yeast mitochondria. Proc. Natl Acad. Sci. USA, 77, 3167–3170.Google Scholar
  19. Bossi, L. (1983) Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J. Mol. Biol., 164, 73–87.CrossRefGoogle Scholar
  20. Bossi, L. and Roth, J. R. (1980) The influence of codon context on genetic code translation. Nature, 286, 123–127.CrossRefGoogle Scholar
  21. Bouadloun, F., Donner, D. and Kurland, C. G. (1983) Codon-specific missense errors in vivo. EMBO J., 2, 1351–1356.Google Scholar
  22. Bruce, A. G., Atkins, J. F., Wills, N., Uhlenbeck. O., Gesteland, R. F. (1982) Replacement of anticodon loop nucleotides to produce functional tRNA: amber suppressors derived from yeast tRNA-Phe. Proc. Natl Acad. Sci. USA, 79, 7129–7131.Google Scholar
  23. Bubienko, E., Cruz, P., Thomason, J. F. and Borer, P. N. (1983) Nearest-neighbor effects in the structure and function of nucleic acids. Progr. Nucl. Ac. Res. Mol. Biol., 30, 41–90.CrossRefGoogle Scholar
  24. Buchanan, J. H. and Stevens, A. S. (1978) Fidelity of histone synthesis in cultured human fibroblasts. Mech. Ageing Dev., 1, 321–334.CrossRefGoogle Scholar
  25. Buck, M. and Ames, B. N. (1984) A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella. Cell, 36, 523–531.CrossRefGoogle Scholar
  26. Bückel, P., Piepersberg, W. and Böck, A. (1976) Suppression of temperature- sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: a possible mechanism. Mol. Gen. Genet., 149, 51–61.CrossRefGoogle Scholar
  27. Buckingham, R. H. (1976) Anticodon conformation and accessibility in wild-type and suppressor tryptophan tRNA from E. coli. Nucl. Acids Res., 3, 965–975.Google Scholar
  28. Buckingham, R. H. and Kurland, C. G. (1977) Codon specificity of UGA suppressor tRNATrp from E. coli. Proc. Natl Acad. Sci. USA, 74, 5496–5498.CrossRefGoogle Scholar
  29. Buckingham, R. H. and Kurland, C. G. (1980) Interactions between UGA suppressor tRNATrp and the ribosome: mechanisms of tRNA selection. In Transfer RNA, Biological Aspects (eds D. Soli, J. N. Abelson and P. R. Schimmel ), Cold Spring Harbor Laboratory, New York, monograph 9B, pp. 421–26.Google Scholar
  30. Cabanas, M. J. and Modolell, J. (1980) Non-enzymatic translocation and spontaneous release of non-cognate peptidyl-tRNA from E. coli ribosomes. Biochemistry, 19, 5411–5416.Google Scholar
  31. Caplan, A. B. and Menninger, J. R. (1979) Tests of the ribosomal editing hypothesis: amino acid starvation differentially enhances the dissociation of peptidyl-tRNA from the ribosome. J. Mol. Biol., 134, 621–637.CrossRefGoogle Scholar
  32. Carrier, M. J. and Buckingham, R. H. (1984) An effect of codon context in the mistranslation of UGU codons in vitro. J. Mol. Biol., 175, 29–38.CrossRefGoogle Scholar
  33. Cedergren, R. J., La Rue, B., Sankoff, D. and Grosjean, H. (1981) The evolving tRNA molecule. In CRC Critical Reviews in Biochemistry, Vol. 11, CRC Press, Florida, pp. 35–104.Google Scholar
  34. Chavancy, G. and Garel, J. P. (1981) Does quantitative tRNA adaptation to codon content in mRNA optimise the ribosomal translation efficiency? Proposal for a translation system model. Biochimie, 63, 187–195.CrossRefGoogle Scholar
  35. Chavancy, G., Daillie, J. and Garel, J. P. (1971) Adaptation fonctionnelle des tRNA à la biosynthèse protéique dans un système cellulaire hautement différencié. IV - Evolution des tRNA dans la glande séricigène de Bombyx mori L. au cours du dernier âge larvaire. Biochimie, 53, 1187–1197.CrossRefGoogle Scholar
  36. Chavancy, G., Chevallier, A., Fournier, A. and Garel, J. P. (1979) Adaptation of iso-tRNA concentration to mRNA codon frequency in the eukaryotic cell. Biochimie, 61, 71–78.CrossRefGoogle Scholar
  37. Cody, J. D. M. and Conway, T. W. (1981) Defective lysis of streptomycin-resistant E. coli cells infected with bacteriophage f2. J. Virology, 37, 813–820.Google Scholar
  38. Colby, D. S., Schedel, P. and Guthrie, C. (1976) A functional requirement for modification of the wobble nucleotide in the anticodon of a T4 suppressor tRNA. Cell, 9, 449–463.CrossRefGoogle Scholar
  39. Coons, S. F., Smith, L. F. and Loftfield, R. B. (1979) The nature of amino acids errors in in vivo biosynthesis of rabbit hemoglobin. Fed. Proc., 38, 328.Google Scholar
  40. Crick, F. H. C. (1966) Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol., 19, 548–555.CrossRefGoogle Scholar
  41. De Wilde, M., Cabezon, T., Herzog, A., Bollen, A. (1977) Apport de la génétique à la connaissance du ribosome bactérien. Biochimie, 59, 125–140.CrossRefGoogle Scholar
  42. Diamond, A., Dudock, B. and Hatfield, D. (1981) Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell, 25, 497–506.CrossRefGoogle Scholar
  43. Dirheimer, G. (1983) Chemical nature, properties, location and physiological variations of modified nucleosides in tRNAs. In Recent Results in Cancer Research, Vol. 84, Springer Verlag, Berlin and Heidelberg, pp. 15–46.Google Scholar
  44. Dunn, J. J. and Studier, F. W. (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the location of T7 genetic elements. J. Mol. Biol., 166, 477–535.CrossRefGoogle Scholar
  45. Dunn, R., McCoy, J., Simsek, M., Majumdar, A., Chang, S. H., RajBhandar, U. L. and Khorana, H. G. (1981) The bacteriorhodopsin gene. Proc. Natl Acad. Sci. USA, 78, 6744–6748.CrossRefGoogle Scholar
  46. Edelmann, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell, 10, 131–137.Google Scholar
  47. Eigen, M. and Winkler-Oswatitsch, R. (1981) Transfer-RNA, an early gene? Naturwissenschaften, 68, 282–292.CrossRefGoogle Scholar
  48. Eisenberg, S. P., Yarns, M. and Söll, L. (1979) The effect of an E. coli regulatory mutation on tRNA structure. J. Mol. Biol., 135, 111–126.Google Scholar
  49. Engelberg-Kulka, H. (1981) UGA suppression by normal tRNATrp in E. coli: codon context effects. Nucl. Acids Res., 9, 983–991.Google Scholar
  50. Etcheverry, T., Colby, D. and Guthrie, C. (1979) A precursor to a minor species of yeast tRNASer contains an intervening sequence. Cell, 18, 11–26.CrossRefGoogle Scholar
  51. Feinstein, S. I. and Altman, S. (1978) Context effects on nonsense codon suppression in E. coli Genetics, 88, 201–219.Google Scholar
  52. Fiers, S. (1979) Structure and function of RNA bacteriophages. In Comprehensive Virology (eds H. Fraenkel-Conrat and R. R. Wagner), Vol. 13, Plenum Publishing Corp., New York, pp. 69–203.Google Scholar
  53. Follon, A. M., Jinks, C. S., Strycharz, G. D. and Nomura, M. (1979) Regulation of ribosomal protein synthesis in E. coli by selective mRNA inactivation. Proc. Natl Acad. ScL USA, 76, 3411–3415.CrossRefGoogle Scholar
  54. Fox, T. D. and Weiss-Brummer, B. (1980) Leaky +1 and —1 frameshift mutations at the same site in yeast mitochondrial gene. Nature, 288, 60–64.CrossRefGoogle Scholar
  55. Fuller, W. and Hodgson, A. (1967) Conformation of the anticodon loop in tRNA. Nature, 215, 817–821.CrossRefGoogle Scholar
  56. Gallant, J. and Foley, D. (1979) On the causes and prevention of mistranslation. In Ribosomes, Structure, Function and Genetics (eds G. Chambliss, G. R. Craven, J. Davies, K. Davis, L. Kahan and M. Nomura ), University Park Press, Baltimore, pp. 615–638.Google Scholar
  57. Gallant, J., Ehrlich, H., Weiss, R., Palmer, L. and Nyari, L. (1982) Nonsense suppression in aminoacyl-tRNA limited cells. Mol. Gen. Genet., 186, 221–227.CrossRefGoogle Scholar
  58. Ganoza, M. C., Fraser, A. R. and Neilson, T. (1978) Nucleotides contiguous to AUG affect translational initiation. Biochemistry, 17, 2769–2776.CrossRefGoogle Scholar
  59. Garel, J. P. (1974) Functional adaptation of tRNA population. J. Theor. Biol., 43, 211–225.CrossRefGoogle Scholar
  60. Garel, J. P. (1976) Quantitative adaptation of isoacceptor tRNAs to mRNA codons of alanine, glycine and serine. Nature, 260, 805–806.CrossRefGoogle Scholar
  61. Gauss, D. H. and Sprinzl, M. (1981) Compilation of tRNA sequences. Nucl. Acids Res., 9, r1–r42.CrossRefGoogle Scholar
  62. Gauss, D. A. and Sprinzl, M. (1984) Compilation of tRNA sequences and of tRNA genes. Nucl. Acids Res., 12, r1–rl31.CrossRefGoogle Scholar
  63. Geerdes, H. A., Van Boom, J. H. and Hilbers, C. W. (1980) Codon-anticodon interaction in tRNA: NMR study of the binding of the codon UUC. J. Mol. Biol., 142, 219–230.CrossRefGoogle Scholar
  64. Gefter, M. L. and Russel, R. L. (1969) Role of modifications in tyrosine tRNA: a modified base affecting ribosome binding. J. Mol. Biol., 39, 145–157.CrossRefGoogle Scholar
  65. Gheysen, D., Iserentant, D., Derom, C. and Fiers, W. (1982) Systematic alteration of the nucleotide sequence preceding the translation initiation codon and the effects on bacterial expression of the cloned SV 40 small-T antigen gene. Gene, 17, 55–63.CrossRefGoogle Scholar
  66. Goldberg, A. L. and St John, A. C. (1976) Intracellular protein degradation in mammalian and bacterial cells: Part 2. Ann. Rev. Biochem., 45, 747–803.CrossRefGoogle Scholar
  67. Goldman, E. (1982) Effect of rate-limiting elongation on bacteriophage MS2 RNA- directed protein synthesis in extracts of E. coli. J. Mol. Biol., 158, 619–636.Google Scholar
  68. Goldman, E., Holmes, W. M. and Hatfield, G. W. (1979) Specificity of codon recognition by Escherichia coli isoaccepting species determined by protein synthesis in vitro directed by phage RNA. J. Mol. Biol., 129, 567–585.CrossRefGoogle Scholar
  69. Gorenstein, D. G. and Goldfield, E. M. (1982) High-resolution phosphorus nuclear magnetic resonance spectroscopy of tRNAs: multiple conformations in the anticodon loop. Biochemistry, 21, 5839–5849.CrossRefGoogle Scholar
  70. Gorini, L. (1974) Streptomycin and misreading of the genetic code. In Ribosomes (eds M. Nomura, A. Tissières and P. Lengyel ), Cold Spring Harbor Laboratory, New York, pp. 791–803.Google Scholar
  71. Gouy, M. arid Gautier, R. (1982) Codon usage in bacteria: a correlation with gene expressivity. Nucl. Acids Res., 10, 7055–7074.Google Scholar
  72. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Merrier, R. (1981) Codon catalogue is a genome strategy for gene expressivity. Nucl. Acids Res., 9, r43–r74.CrossRefGoogle Scholar
  73. Grosjean, H. (1979) Codon usage in several organisms. In Transfer RNA: Biological Aspects (eds D. Söll, J. N. Abelson and P. Schimmel ), Cold Spring Harbor Laboratory, ftew York, monograph 9B, pp. 565–569.Google Scholar
  74. Grosjean, H. and Fiers, W. (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon energy hypothesis. Gene, 18, 199–209.CrossRefGoogle Scholar
  75. Grosjean, H., Cedergren, R. J. and McKay, W. (1982) Structure in tRNA data. Biochimie, 64, 387–397.CrossRefGoogle Scholar
  76. Grosjean, H., de Henau, S. and Crothers, D. M. (1978) On the physical basis for ambiguity in genetic coding interactions. Proc. Nad Acad. Sci. USA, 75, 610–614.Google Scholar
  77. Grosjean, H., Soli, D. and Crothers, D. M. (1976) Studies of the complex between tRNA with complementary anticodons. J. Mol. Biol., 103, 499–518.CrossRefGoogle Scholar
  78. Grosjean, H., Sankoff, D., Jou, M. J., Fiers, W. and Cedergren, R. J. (1978) Bacteriophage MS2 RNA: a correlation between the stability of the codon:anti- codon interaction and the choice of code words. J. Mol. Evol., 12, 113–119.CrossRefGoogle Scholar
  79. Grosjean, H., de Henau, S., Houssier, C. and Buckingham, R. H. (1980) Wild-type E. coli tRNA efficiency suppresses UGA opal codon in an eukaryotic cell-free protein synthesis: evolutionary implications. Arch. Internat. Physiol. Biochim., 88, 168–169.Google Scholar
  80. Gu, X., Nicoghosian, K., Cedergren, R. J. and Wong, J. T. (1983) Sequence of halobacterial tRNAs and the paucity of U in the first position of their anticodons. Nucl. Acids Res., 11, 5443–5450.CrossRefGoogle Scholar
  81. Gupta, R. (1984) Halobacterium volcanii tRNAs: identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J. Biol. Chem., 259, 9461 - 9471.Google Scholar
  82. Harley, C. B., Pollard, J. W. and Stanners, C. P. (1981) Model for messenger RNA translation during amino acid starvation applied to the calculation of protein synthetic error rates. J. Biol. Chem., 256, 10786–10794.Google Scholar
  83. Hatfield, D., Diamond, A. and Dudock, B. (1982) Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc. Nad Acad. Sci. USA, 79, 6215–6219.CrossRefGoogle Scholar
  84. Hatfield, D., Varrichio, F., Rich, M. and Forget, B. G. (1982) The aminoacyl-tRNA population of human reticulocytes. J. Biol. Chem., 257, 3183–3188.Google Scholar
  85. Heckman, J. E., Sarnoff, J., Alzner-Deweerd, B., Yin, S. and Rajbhandary, U. L. (1980) Novel features in the genetic code and codon reading patterns in Neurospora crassa mitochondria based on sequences of six mitochondrial tRNAs. Proc. Natl Acad. Sci. USA, 77, 3159–3163.CrossRefGoogle Scholar
  86. Hensgens, L. A., Brakenhoff, J., de Vries, B. F., Sloof, P., Tromp, M. C., Van Boom, J. H. and Benne, R. (1984) The sequence of the gene for cytochrome oxydase sub-unit I, a frameshift containing gene for cytochrome oxydase II and seven unassigned reading frames in Trypanosoma brucei mitochondrial maxi circle DNA. Nucl. Acids Res., 12, 7327–7344.CrossRefGoogle Scholar
  87. Heyer, W. D., Thuriaux, P., Kohli, J., Ebert, P., Kersten, H., Gehrke, C., Kuo, K. and Agris, P. F. (1984) An antisuppressor mutation of S. pombe affects the post- transcriptional modification of the ‘wobble’ base in the anticodon of tRNAs. J. Biol. Chem., 259, 2856–2862.Google Scholar
  88. Hillen, W., Egert, E., Lindner, H. J. and Gassen, H. G. (1978) Restriction or amplification of wobble recognition: the structure of 2-thio-5-methylaminomethyl- uridine and the interaction of odd uridines with the anticodon loop backbone. FEBS Lett., 94, 361–364.CrossRefGoogle Scholar
  89. Hirsh, D. (1971) Tryptophan transfer RNA as the UGA suppressor. J. Mol Biol., 58, 439–458.CrossRefGoogle Scholar
  90. Högenauer, G. (1974) Binding of UGA to wild type and suppressor tryptophan tRNA from E. coli FEBS Lett., 39, 310–316.CrossRefGoogle Scholar
  91. Holmes, W. M., Goldman, E., Miner, T. A. and Hatfield, G. W. (1977) Differential utilization of leucyl-tRNAs by Escherichia coli. Proc. Natl Acad. Sci. USA, 74, 1393–1397.CrossRefGoogle Scholar
  92. Hornig, H., Woolley, P. and Lührmann, R. (1984) Decoding at the ribosomal A-site: the effect of a defined codon-anticodon mismatch upon the behaviour of bound aminoacyl-tRNA. J. Biol. Chem., 259, 5632–5636.Google Scholar
  93. Igarashi, K., Hashimoto, S., Miyake, A., Kashiwagi, K. and Hirose, S. (1982) Increase of fidelity of polypeptide synthesis by spermidine in eukaryotic cell-free system. Eur. J. Biochem., 128, 597–604.CrossRefGoogle Scholar
  94. Ikemura, T. (1981a) Correlation between the abundance of E. coli tRNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol., 146, 1–21.CrossRefGoogle Scholar
  95. Ikemura, T. (1981b) Correlation between the abundance of E. coli tRNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol., 151, 389–409.CrossRefGoogle Scholar
  96. Ikemura, T. (1982) Correlation between the abundance of yeast tRNAs and the occurrence of the respective codons in protein genes. J. Mol. Biol., 158, 573–597.CrossRefGoogle Scholar
  97. Inokuchi, H., Yamao, F., Sakano, H. and Ozeki, H. (1979) Identification of tRNA suppressors in E. coli 1. Amber suppressor su+2, an anticodon mutant of tRNA2Glu. J. Mol. Biol., 132, 649–662.CrossRefGoogle Scholar
  98. Jank, P., Shindo-Okado, N., Nishimura, S. and Gross, H. J. (1977) Rabbit liver tRNA1Val. I. Primary structure and unusual codon recognition. Nucl Acid Res., 4, 1999–2008.CrossRefGoogle Scholar
  99. Jelenc, P. C. and Kurland, C. G. (1979) Nucleotide triphosphate regeneration decreases the frequency of translation errors. Proc. Natl Acad. Sci. USA, 76, 3174–3178.CrossRefGoogle Scholar
  100. Johnston, P. D. and Redfield, A. G. (1979) Proton FT-NMR studies of tRNA structure and dynamics. In Structure, Properties and Recognition (eds P. Schimmel, D. Söll and J. N. Abelson ), Cold Spring Harbor, monograph 9A, pp. 191–206.Google Scholar
  101. Kagawa, Y., Nojima, H., Nukiwa, N., Ishizuka, M., Nakajima, T., Yasuhara, T., Tanaka, T. and Oshima, T. (1984) High guanine plus cytosine content in the third letter of codons of an extreme thermophile. J. Biol Chem., 259, 2956–2960.Google Scholar
  102. Kastelein, R. and Van Duin, J. (1982) Ribosomal frameshift errors control the expression of an overlapping gene in RNA phage. In Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (eds M. Grunberg- Manago and B. Safer ), Elsevier Biomedical, New York, pp. 221–240.Google Scholar
  103. Kastelein, R. A., Berkhout, B. and Van Duin, J. (1983) Opening the closed ribosome- binding site of the lysis cistron of bacteriophage MS2. Nature, 305, 741–744.CrossRefGoogle Scholar
  104. Kawasaki, M., Tsonis, P. A., Nishio, K. and Takemura, S. (1980) Abnormal codon recognition of glycyl-tRNA from the posterior silk glands of Bombix mori. J. Biochem. (Tokyo), 88, 1151–1157.Google Scholar
  105. Khazaie, K., Buchanan, J. H. and Rosenberger, R. F. (1984a) The accuracy of Qß RNA translation. I. Errors during the synthesis of Qβ protein by intact Escherichia coli cells. Eur. J. Biochem., 144, 485–489.CrossRefGoogle Scholar
  106. Khazaie, K., Buchanan, J. H. and Rosenberger, R. F. (1984b) The accuracy of Qß RNA translation. II. Errors during the synthesis of Qβ proteins by cell-free Escherichia coli extracts. Eur. J. Biochem., 144, 491–495.CrossRefGoogle Scholar
  107. Kim, C. H. and Warner, J. R. (1983) Messenger RNA for ribosomal protein in yeast. J. Mol Biol, 165, 79–89.CrossRefGoogle Scholar
  108. Kohli, J. (1983) The genetics concerning modified nucleotides in relation to their influence on tRNA function. In The Modified Nucleosides of tRNA, Vol. II (eds P. F. Agris and R. A. Kopper ), Alan R. Liss, New York.Google Scholar
  109. Kohli, J. and Grosjean, H. (1981) Usage of the three termination codons: compilation and analysis of the known eukaryotic and prokaryotic translation termination sequences. Mol Gen. Genet., 182, 430–439.CrossRefGoogle Scholar
  110. Konigsberg, W. and Godson, G.N. (1983) Evidence for use of rare codons in the DNA C-gene and other regulatory genes of E. coli. Proc. Natl Acad. Sci. USA, 80, 687–691.CrossRefGoogle Scholar
  111. Kopelowitz, J., Schoulaker-Schwarz, R., Lebanon, A. and Engelberg-Kulka, H. (1984) Modulation of E. coli tryptophan attenuation by the UGA readthrough process. Mol. Gen. Genet., 196, 541–545.Google Scholar
  112. Kruse, T. A., Clark, B. F. C., Appel, B. and Erdmann, V. A. (1980) The structure of the CCA end of tRNA, aminoacyl-tRNA and aminoacyl-tRNA in the ternary complex. FEBS Lett., 117, 315–318.CrossRefGoogle Scholar
  113. Kubli, E. (1980) Transfer RNA modification in eukaryotes: an evolutionary interpretation. Trends in Biochem. Sci., 5, 190–191.CrossRefGoogle Scholar
  114. Kurland, C. G. (1979) Reading frame errors on ribosomes. In Nonsense Mutations and tRNA Suppressors (eds J. E. Celis and J. D. Smith ), Academic Press, New York, pp. 98–108.Google Scholar
  115. Labuda, D. and Pörschke, D. (1980) Multistep mechanism of codon recognition by tRNA. Biochemistry, 19, 3799–3805.CrossRefGoogle Scholar
  116. Labuda, D., Striker, G. and Pörschke, D. (1984) Mechanism of codon recognition by tRNA and codon-induced tRNA association. J. Mol. Biol., 174, 587–604.CrossRefGoogle Scholar
  117. Lagerkvist, U. (1978) ‘Two out of three’: an alternative method of codon reading. Proc. Natl Acad. Sei. USA, 75, 1759–1762.Google Scholar
  118. Lagerkvist, U. (1981) Unorthodox codon reading and the evolution of the genetic code. Cell, 23, 305–306.CrossRefGoogle Scholar
  119. Larue, B., Cedergren, R. J., Sankoff, D. and Grosjean, H. (1979) Evolution of methionine initiator and phenylalanine tRNA. J. Mol Evol., 14, 287–300.CrossRefGoogle Scholar
  120. Laten, H. M. (1984) Antisuppression of class I suppressors in an isopentenylated- tRNA deficient mutant of S. cerevisiae. Current Genetics, 8, 29–32.CrossRefGoogle Scholar
  121. Loftfield, R. B. (1963) The frequency of errors in protein biosynthesis. Biochem. J., 89, 89–92.Google Scholar
  122. Loftfield, R. B. and Vanderjagt, D. (1972) The frequency of errors in protein biosynthesis. Biochem. J., 128, 1353–1356.Google Scholar
  123. Lomant, A. J. and Fresco, J. R. (1975) Structural and energetic consequences of non-complementary base oppositions in nucleic acid helix. Progr. Nucl. Acids Res. Mol. Biol., 15, 185–218.CrossRefGoogle Scholar
  124. Lührmann, R., Eckhardt, H. and Stöffler, G. (1979) Codon-anticodon interaction at the ribosomal peptidyl-site. Nature, 280, 423–425.CrossRefGoogle Scholar
  125. Lustig, F., Elias, P., Axberg, T., Samuelson, T., Tittawella, I. and Lagerkvist, U. (1981) Codon reading and translation error: reading of the glutamine and lysine codons during protein synthesis in vitro. J. Biol. Chem., 256, 2635–2643.Google Scholar
  126. Macreadie, I. G., Novitski, C. E., Maxwell, R. J., John, U., Ooi, B. G., McMullen, G. L., Lukins, H. B., Linnane, A. W. and Nagley, P. (1983) Biogenesis of mitochondria; the mitochondrial gene aap 1 coding for mitochondrial ATPase subunit 8 in S. cerevisiae. Nucl. Acids Res., 11, 4435–4451.CrossRefGoogle Scholar
  127. Manley, J. L. (1978a) Synthesis and degradation of termination and premature- termination fragments of β-galactosidase in vitro and in vivo. J. Mol. Biol., 125, 407–432.CrossRefGoogle Scholar
  128. Manley, J. L. (1978b) Synthesis of internal re-initiation fragments of β-galactosidase in vitro and in vivo. J. Mol. Biol., 125, 449–466.CrossRefGoogle Scholar
  129. Medvedev, Z. A. and Medvedeva, M. N. (1978) Use of HI histone to test the fidelity of protein biosynthesis in mouse tissues. Biochem. Soc. Trans, 6, 610–612.Google Scholar
  130. Meier, F., Suter, B., Grosjean, H., Keith, G. and Kubli, E. (1985) Modification of the wobble base in tRNAHis influences in vivo decoding properties. EMBO J., 4, 823–827.Google Scholar
  131. Menninger, J. R. (1983) Computer simulation of ribosome editing. J. Mol. Biol., 171, 383–399.CrossRefGoogle Scholar
  132. Miller, J. H. and Albertini, A. M. (1983) Effects of surrounding sequence on the suppression of nonsense codon. J. Mol. Biol., 164, 59–71.CrossRefGoogle Scholar
  133. Mitra, S. K., Lustig, F., Akesson, B. and Lagerkvist, U. (1977) Codon:anticodon recognition in the valine codon family. J. Biol. Chem., 255, 471–478.Google Scholar
  134. Mitra, S. K., Lustig, F., Akesson, B., Axberg, T., Elias, P. and Lagerkvist, U. (1979) Relative efficiency of anticodons in reading the valine codons during protein synthesis in vitro. J. Biol. Chem., 254, 6397–6401.Google Scholar
  135. Moras, D., Comarmond, M. B., Fischer, J., Weiss, R., Thierry, J. C., Ebel, J. P. and Giégé, R. (1980) Crystal structure of yeast tRNA. Nature, 288, 669–674.CrossRefGoogle Scholar
  136. Mount, D. W. (1980) The genetics of protein degradation in bacteria. Ann. Rev. Genet., 14, 279–319.CrossRefGoogle Scholar
  137. Munz, P., Leupold, U., Agris, P. and Kohli, J. (1981) In vivo decoding rules in Schizosaccharomycespombe are at variance with in vitro data. Nature, 294, 187–188.Google Scholar
  138. Murgola, E. and Pagel, F. T. (1980) Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J. Mol. Biol., 138, 833–844.CrossRefGoogle Scholar
  139. Murgola, E. J., Pagel, F. T. and Hijazi, K. A. (1984) Codon context effects in missense suppression. J. Mol. Biol., 175, 19–27.CrossRefGoogle Scholar
  140. Murgola, J., Prather, N. E., Mims, P. H. and Ishigazi, K. A. (1983) Missense and nonsense suppressors derived from a glycine tRNA by nucleotides insertion and deletion in vivo. Mol. Gen. Genet., 193, 76–81.CrossRefGoogle Scholar
  141. Ninio, J. (1971) Codon-anticodon recognition: the missing triplet hypothesis. J. Mol. Biol., 6, 63–82.CrossRefGoogle Scholar
  142. Ninio, J. (1973) Recognition in nucleic acids and the anticodon families. Progr. Nucl. Acids Res. Mol. Biol., 13, 301–337.CrossRefGoogle Scholar
  143. Nishimura, S. (1979) Modified nucleosides in tRNA. In Transfer RNA: Structure, Properties and Recognition (eds P. R. Schimmel, D. Söll and J. B. Abelson ). Cold Spring Harbor Laboratory, New York, monograph 9A, pp. 59–79.Google Scholar
  144. O’Farrell, P. H. (1978) The suppression of defective translation by ppGpp and its role in the stringent response. Cell, 15, 545–547.CrossRefGoogle Scholar
  145. Parker, J. (1981) Mistranslated protein in E. coli. J. Biol. Chem., 256, 9770–9773.Google Scholar
  146. Parker, J., Pollard, J., Friesen, J. D. and Stanners, C. P. (1978) Stuttering: high level mistranslation in animal and bacterial cells. Proc. Natl Acad. Sci. USA, 75, 1091–1095.CrossRefGoogle Scholar
  147. Parker, J., Johnston, T. C., Borgia, P. T., Holtz, G., Remaut, E. and Fiers, W. (1983) Codon usage and mistranslation. J. Biol. Chem., 258, 10 007–10 012.Google Scholar
  148. Pedersen, S. (1984) Escherichia coli ribosomes translate in vivo with variable rate. EMBO J., 3, 2895–2898.Google Scholar
  149. Peters, M. and Yarns, M. (1979) Transfer RNA selection at the ribosomal A and P sites. J. Mol. Biol., 134, 471–491.CrossRefGoogle Scholar
  150. Petrullo, L. A., Gallagher, P. J. and Elseviers, D. (1983) The role of 2-methylthio-N6- isopentenyladenosine in readthrough and suppression of nonsense codons in E. coli. Mol. Gen. Genet., 190, 289–294.CrossRefGoogle Scholar
  151. Picard-Bennoun, M. (1982) Does translational ambiguity increase during cell differentiation? FEBS Lett., 149, 167–170.CrossRefGoogle Scholar
  152. Picard-Bennoun, M. and Becqueret, J. (1981) Genetic analysis of cytoplasmic ribosomes in fungi. Trends in Biochem. Sci., 6, 272–274.CrossRefGoogle Scholar
  153. Pope, W. T., Brown, A. and Reeves, R. H. (1978) The identification of the tRNA substrates for the supK tRNA methylase. Nucl. Acids Res., 5, 1041–1057.CrossRefGoogle Scholar
  154. Pörschke, D. and Labuda, D. (1982) Codon induced tRNA association: quantitative analysis by sedimentation equilibrium. Biochemistry, 21, 53–56.CrossRefGoogle Scholar
  155. Post, L. E. and Nomura, M. (1980) DNA sequences from the str operon of E. coli. J. Biol. Chem., 255, 4660–4666.Google Scholar
  156. Quigley, G. H. and Rich, A. (1976) Structural domains of transfer RNA molecules. Science, 194, 796–806.CrossRefGoogle Scholar
  157. Ramstein, J. and Buckingham, R. (1981) Tritium exchange on tRNA: slowly exchanging protons sensitive to a change in the dihydrouridine stem. Proc. Natl Acad. Sci. USA, 78, 1567–1571.CrossRefGoogle Scholar
  158. Rice, J. B., Libby, R. J. and Reeve, J. N. (1984) Mistranslation of the mRNA encoding bacteriophage T7-0.3 protein. J. Biol. Chem., 259, 6505–6510.Google Scholar
  159. Robertson, J. M. and Wintermeyer, W. (1981) Effect of translocation on topology and conformation of anticodon and D-loops of tRNA. J. Mol. Biol., 151, 57–69.CrossRefGoogle Scholar
  160. Robinson, M., Lilley, R., Little, S., Emtage, J. S., Yarranton, G., Millican, A., Eaton, M. and Humphreys, G. (1984) Codon usage can affect efficiency of translation of genes in E. coli. Nucl. Acids Res., 12, 6663–6672.CrossRefGoogle Scholar
  161. Rosenberger, R. F. and Foskett, G. (1981) The estimate of the frequency of in vivo transcriptional errors at a nonsense codon in E. coli. Mol. Gen. Genet., 183, 561–563.CrossRefGoogle Scholar
  162. Roth, J. R. (1981) Frameshift suppression. Cell, 24, 601–602.CrossRefGoogle Scholar
  163. Ruusala, T., Ehrenberg, M. and Kurland, C. G. (1982a) Catalytic effects of elongation factors Ts on polypeptide synthesis. EMBO J., 1, 75–78.Google Scholar
  164. Ruusala, T., Ehrenberg, M. and Kurland, C. G. (1982b) Is there proofreading during polypeptide synthesis? EMBO J., 1, 741–745.Google Scholar
  165. Ryoji, M., Hsia, K. and Kaji, A. (1983) Read-through translation. Trends in Biochem. Sci., 8, 88–90.CrossRefGoogle Scholar
  166. Samuelsson, T., Elias, P., Lustig, F. et al. (1980) Aberrations of the classic reading scheme during protein synthesis in vitro. J. Biol. Chem., 255, 4583–4588.Google Scholar
  167. Samuelsson, T., Axberg, T., Boren, T. and Lagerkvist, U. (1983) Unconventional reading of the glycine codons. J. Biol. Chem., 258, 13 178–13 184.Google Scholar
  168. Schmitt, M., Kyriatsoulis, A. and Gassen, H. G. (1982) The context theory as applied to the decoding of the initiator tRNA by E. coli ribosomes. Eur. J. Biochem., 125, 389–394.Google Scholar
  169. Sedlacek, J., Fabry, M. and Rychlik, I. (1979) The arrangement of nucleotides in the coding regions of natural templates. Mol. Gen. Genet., 172, 31–36.CrossRefGoogle Scholar
  170. Sharma, O. K. and Kuchino, Y. (1977) Infidelity of translation of encephalomyo- carditis viral RNA with tRNA from human malignant trophoblastic cells. Biochem. Biophys. Res. Commun., 78, 591–595.CrossRefGoogle Scholar
  171. Sharma, O. K., Beezley, D. N. and Roberts, W. K. (1975) Limitation of reticulocyte tRNA in the translation of heterologous mRNAs. Biochemistry, 15, 4313–4318.CrossRefGoogle Scholar
  172. Smiley, B. L., Lupski, J. R., Svec, P. S., McMacken, R. and Godson, G. N. (1982) Sequences of the E. coli dnaG primase gene and regulation of its expression. Proc. Natl Acad. Sci. USA, 79, 4550–4554.CrossRefGoogle Scholar
  173. Smith, D. W. E. (1975) Reticulocyte tRNA and hemoglobin synthesis: tRNA availability may regulate hemoglobin synthesis in developing red blood cells. Science, 190, 529–534.CrossRefGoogle Scholar
  174. Smith, D. W. E., McNamara, L., Rice, M. and Hatfield, D. L. (1981) The effects of posttranscriptional modification on the function of tRNALys isoaccepting species in translation. J. Biol. Chem., 256, 10033–10036.Google Scholar
  175. Smith, D. W. E., McNamara, A. L., Mushinski, J. F. and Hatfield, D. L. (1984) Tumor-specific hypomodified Phe-tRNA is utilised in translation in preference to the fully-modified isoacceptor of normal cells. J. Biol. Chem., 260, 147–151.Google Scholar
  176. Sommer, S. S. and Cohen, J. E. (1980) The size distribution of protein, mRNA and nuclear RNA. J. Mol. Evol, 15, 37–57.CrossRefGoogle Scholar
  177. Springer, M., Trudel, M., Graffe, M., Plumbridge, J. A., Fayat, G., Mayaux, J. F., Sacerdot, C., Blanquet, S., Grunberg-Manago, M. (1983) E. coli Phe-tRNA synthetase operon is controlled by attenuation in vivo. J. Mol. Biol., 171, 263–279.Google Scholar
  178. Sprinzl, M., Helk, B. and Baumann, U. (1983) Structural and functional studies on the anticodon and T-loop of tRNA. In Gene Expression, the Translation Step and its Control (eds B. Clark andH. U. Petersen ), Munksgaard, Copenhagen, pp. 235–254.Google Scholar
  179. Stent, G. S. (1964) The operon: on its third anniversary. Science, 144, 816.CrossRefGoogle Scholar
  180. Stöffler, G., Hasenbank, R. and Dabbs, E. R. (1981) Expression of the L1-L11 operon in mutants of E. coli lacking the ribosomal protein L1 or L11. Mol. Gen. Genet., 181, 164–168.Google Scholar
  181. Sussman, J. F., Holbrook, S. R., Warrant, R. W., Church, G. M. and Kim, S. H. (1978) Crystal structure of yeast phenylalanine tRNA. J. Mol. Biol., 123, 607–630.CrossRefGoogle Scholar
  182. Takemoto, T., Takeishi, S., Nishimura, S. and Ukita, T. (1973) Transfer of valine into rabbit haenioglobin from various isoaccepting species of valyl-tRNA differing in codon recognition. Eur. J. Biochem., 38, 489–496.CrossRefGoogle Scholar
  183. Tamura, F., Nishimura, S. and Ohki, M. (1984) The E. coli div-E mutation which differentially inhibits synthesis of certain proteins, is in tRNA. EMBO J., 3, 1103–1107.Google Scholar
  184. Taniguchi, T. and Weissmann, C. (1978) Site-directed mutagens in the initiator region of the bacteriophage Qβ coat cistron and their effect on ribosome binding. J. Mol. Biol., 118,533–565.CrossRefGoogle Scholar
  185. Thompson, R. C., Cline, S. W. and Yarns, M. (1982) Site-directed mutagenesis of the anticodon region: the universal U is not essential to tRNA synthesis and function. In Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression (eds M. Grunberg-Manago and B. Safer ), Elsevier Biomedical, New York, pp. 189–220.Google Scholar
  186. Thompson, R. C., Dix, D. B., Gerson, R. B. and Karim, A. M. (1981) A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programiped ribosomes. J. Biol. Chem., 256, 81–86.Google Scholar
  187. Tsang, T. H., Buck, M. and Ames, B. N. (1983) Sequence specificity of tRNA- modifying enzymes: an analysis of 258 tRNA sequences. Biochim. Biophys. Acta, 741, 180–196.Google Scholar
  188. Vacher, J., Grosjean, H., de Henau, S., Finelli, J. and Buckingham, R. H. (1984a) Eur. J. Biochem., 138, 77–81.CrossRefGoogle Scholar
  189. Vacher, J., Grosjean, H., Houssier, C. and Buckingham, R. H. (1984b) The effect of point mutations affecting E. coli tryptophan-tRNA on anticodon:anticodon inter-actions and on UGA suppression. J. Mol. Biol., 177, 329–342.CrossRefGoogle Scholar
  190. Varenne, S., Buc, J., Lloubes, R. and Lazdunski, C. (1984) Translation is a non-uniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J. Mol. Biol., 180, 549–576.CrossRefGoogle Scholar
  191. Wagner, E. G. H. and Kurland, C. G. (1980) Translation accuracy enhanced in vitro by (p)ppGpp. Mol. Gen. Genet., 180, 139–145.CrossRefGoogle Scholar
  192. Wagner, E. G. H., Jelenc, P. C., Ehrenberg, M. and Kurland, C. G. (1982) Rate of elongation of polyphenylalanine in vitro. Eur. J. Biochem., 122, 193–197.CrossRefGoogle Scholar
  193. Weiss, G. B. (1973) Translational control of protein synthesis by tRNA unrelated to changes in tRNA concentration. J. Mol. Evol., 2, 199–204.CrossRefGoogle Scholar
  194. Weiss, R. and Gallant, J. (1983) Mechanism of ribosome frameshifting during translation of the genetic code. Nature, 302, 389–393.CrossRefGoogle Scholar
  195. Weissenbach, J. and Grosjean, H. (1981) Effect of threonylcarbomoyl modification (t6 A) in yeast tRNA on codon: anticodon and anticodon: anticodon interactions: a thermodynamic and kinetic evaluation. Eur. J. Biochem., 116, 207–213.CrossRefGoogle Scholar
  196. Weissenbach, J., Dirheimer, G., Faleoff, R., Sanceau, J. and Falcoff, E. (1977) Yeast tRNA (anticodon UAG) translates all six leucine codons in extracts from interferon treated cells. FEBS Lett., 82, 71–76.CrossRefGoogle Scholar
  197. Westhof, E., Dumas, P. and Moras, D. (1983) Loop stereochemistry and dynamics in tRNA. J. Biomol. Struct. And Dyn., 1, 337–355.Google Scholar
  198. Woese, C. (1967) The Genetic Code: the Molecular Basis for Genetic Expression. Harper and Row, New York.Google Scholar
  199. Wurmbach, P. and Nierhaus, K. H. (1979) Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA) site. Proc. Natl Acad. Sci. USA, 76, 2143–2147.CrossRefGoogle Scholar
  200. Yanofsky, C. (1981) Attenuation in the control of expression of bacterial operon. Nature, 289, 751–758.CrossRefGoogle Scholar
  201. Yarus, M. (1979) The accuracy of translation. Progr. Nucl. Acids Res. Mol. Biol., 23, 195–225.CrossRefGoogle Scholar
  202. Yarus, M. (1982) Translational efficiency of tRNAs: uses of an extended anticodon. Science, 218, 646–652.CrossRefGoogle Scholar
  203. Yarus, M. and Thompson, R. C. (1984) Precision of protein biosynthesis. In Gene Function in Prokaryotes, Cold Spring Harbor Laboratory, New York, pp. 23–63.Google Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations