Errors and the integrity of genetic information transfer



Accuracy in the synthesis of macromolecules involved with the processes of genetic information transfer, that is with the replication and repair of DNA, the transcription of genes into RNA messages, and the translation of RNA into proteins, is of particular interest in relation to the survival and reproduction of living cells. As was pointed out by Orgel (1963), the ability of a cell to carry out its various vital functions depends not only on its inheritance of an intact complement of genes, but also on its receiving from its parent a viable molecular apparatus for translating them into protein. In particular, Orgel drew attention to a possibility overlooked by the conventional dogma of a strictly unidirectional flow of genetic information from DNA to RNA to protein, namely that errors can be propagated cyclically within the translation apparatus.


Error Propagation Error Level Error Frequency Adaptor Model Error Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt, F. W., Kellems, R. E., Bertino, J. R. and Schimke, R. T. (1978) Selective amplification of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cell. J. Biol. Chem., 253, 1357–1370.Google Scholar
  2. Branscomb, E. W. and Galas, D.J. (1975) Progressive decrease in protein synthesis accuracy induced by streptomycin in E. coli. Nature, 254, 161–163.Google Scholar
  3. Burnet, F. M. (1974) Intrinsic Mutagenesis: A Genetic Approach to Ageing, Wiley, New York.Google Scholar
  4. Ciechanover, A., Finlay, D. and Varshavsky, A. (1984) Ubiquitin dependance of selective protein degradation demonstrated in the mammalian cell cycle mutant ts 85. Cell, 37, 57–66.CrossRefGoogle Scholar
  5. Crick, F. H. C., Brenner, S., Klug, A. and Pieczenik, G. (1976) A speculation on the origin of protein synthesis. Orig. Life, 1, 389–397.CrossRefGoogle Scholar
  6. Cutler, R. G. (1982) The dysdifferentiative hypothesis of mammalian ageing and longevity. In The Ageing Brain: Cellular and Molecular Mechanisms of Ageing in the Neurons System (eds E. Giacobini, G. Filogamo, G. Giacobini and A. Vernadakis ), Raven Press, New York.Google Scholar
  7. Edelman, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell, 10, 131–137.Google Scholar
  8. Ehrenberg, M. and Kurland, C. G. (1984) Cost of accuracy determined by a maximal growth restraint. Quart. Rev. Biophys., 17, 45–82.CrossRefGoogle Scholar
  9. Eigen, M. and Schuster, P. (1979) The Hypercycle. Springer Verlag, Berlin and New York.CrossRefGoogle Scholar
  10. Finlay, D., Ciechanover, A. and Varshavsky, A. (1984) Thermolability of ubiquitin–activating enzyme from the mammalian cell cycle mutant ts 85. Cell, 37, 43–55.CrossRefGoogle Scholar
  11. Fong, D. and Poole, B. (1982) The effect of canavanine on protein synthesis and protein degradation in IMR-90 fibroblasts. Biochim. Biophys. Acta, 696, 193–200.Google Scholar
  12. Gallant, J. (1981) The error catastrophe theory of cellular senescence: A review. In Biological Mechanisms of Ageing (ed. R. T. Schimke), pp. 373–381. Publication no. 81 - 2194, National Institute of Health, Bethesda, Maryland.Google Scholar
  13. Gallant, J. and Foley, D. (1980) On the causes and prevention of mistranslation. In Ribosomes: Structure, Function and Genetics (eds C. Chambliss, C. R. Craven, J. Davis, L. Kahan and M. Nomura ), University Park Press, Baltimore, pp. 615–640.Google Scholar
  14. Gallant, J. A. and Prothero, J. (1980) Testing models of error propagation. J. Theor. Biol, 83, 561–578.CrossRefGoogle Scholar
  15. Gavilanes, J. G., de Buitrago, G. G., Perez-Castells, R. and Rodriguez, R. (1982) Isolation, characterisation and amino acid sequence of a ubiquitin-like protein from insect egg. J. Biol Chem., 257, 10267–10270.Google Scholar
  16. Gershon, D. (1979) Current status of age altered enzymes: Alternative mechanisms, Mech. Ageing Dev., 9, 189–196.CrossRefGoogle Scholar
  17. Goel, N. S. and Islam, S. (1976) Error catastrophe in and the evolution of the protein synthesizing machinery. J. Theor. Biol, 68, 167–182.CrossRefGoogle Scholar
  18. Goel, N. S. and Yeas, M. (1975) Error catastrophe hypothesis with reference to ageing and the evolution of the protein synthesizing machinery. J. Theor. Biol, 55, 245– 282.Google Scholar
  19. Goff, S. A., Casson, L. P. and Goldberg, A. L. (1984) The heatshock regulatory gene, htpR, influences rates of protein degradation and expression of the Ion gene in E. coli Proc. Natl Acad. Sci. USA, 81, 6647–6651.CrossRefGoogle Scholar
  20. Goldberg, A. L. and St John, A. C. (1976) Intracellular protein degradation in mammalian and bacterial cells. Ann. Rev. Biochem., 45, 747–803.CrossRefGoogle Scholar
  21. Hasegawa, M., Yano, T. and Miyata, T. (1984) Evolutionary implications of error amplification and the self-replicating and protein-synthesising machinery. J. Mol. Evol, 20, 77–85.CrossRefGoogle Scholar
  22. Hershko, A. (1983) Ubiquitin: Roles in protein modification and breakdown. Cell, 34, 11–12.CrossRefGoogle Scholar
  23. Hershko, A. and Ciechanover, A. (1982) Mechanisms of intracellular protein breakdown. Ann. Rev. Biochem., 51, 335–364.CrossRefGoogle Scholar
  24. Hightower, L. E. (1980) Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesise several polypeptides, J. Cell Physiol, 102, 407–427.CrossRefGoogle Scholar
  25. Hipkiss, A. R. (1979) Inhibition of breakdown of canavanyl-proteins in E. coli by chloramphenicol. Ferns. Microbiol Lett., 6, 349–353.Google Scholar
  26. Hoffmann, G. W. (1974) On the origin of the genetic code and the stability of the translation apparatus. J. Mol. Biol, 86, 349–362.CrossRefGoogle Scholar
  27. Holliday, R. (1984) The significance of DNA methylation in cellular ageing. In Molecular Basis of Ageing (eds A. D. Woodhead and A. D. Blackett ), Brookhaven Symposium Volume 33, pp. 1–15.Google Scholar
  28. Holliday, R. (1986) Genes, proteins and cellular ageing. Benchmark Papers in Genetics (ed. R. Holliday), van Nostrand Reinhold, Philadelphia.Google Scholar
  29. Holliday, R. and Kirkwood, T. B. L. (1983) Theories of cell ageing: A case of mistaken identity. J. Theor. Biol, 103, 329–330.CrossRefGoogle Scholar
  30. Holliday, R. and Tarrant, G. M. (1972) Altered enzymes in ageing human fibroblasts. Nature, 238, 26–30.CrossRefGoogle Scholar
  31. Hopfield, J. J. (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.CrossRefGoogle Scholar
  32. Kelley, P. M. and Schlesinger, M. J. (1978) The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell, 15, 1277–1286.CrossRefGoogle Scholar
  33. Kemshead, J. T. and Hipkiss, A. R. (1974) Degradation of abnormal proteins in E. coli: relative susceptibility of canavanyl-proteins and puromycin peptides to proteolysis in vitro. Eur. J. Biochem., 45,535–540. Kirkwood, T. B. L. (1977) Evolution of ageing. Nature, 270,301–304. Kirk wood, T. B. L. (1980) Error propagation in intracellular information transfer. J. Theor. Biol., 82, 363–382.Google Scholar
  34. Kirkwood, T. B. L. (1977) Evolution of ageing. Nature, 270, 301–304.Google Scholar
  35. Kirkwood, T. B. L. (1980) Error propagation in intracellular information transfer. Theor. Biol. , 97, 257–265.Google Scholar
  36. Kirkwood, T. B. L. and Holliday, R. (1975) The stability of the translation apparatus. J. Mol. Biol, 97, 257–265.CrossRefGoogle Scholar
  37. Kirkwood, T. B. L., Holliday, R. and Rosenberger, R. F. (1984) Stability of the cellular translation process. Int. Rev. Cytol., 92, 93–132.CrossRefGoogle Scholar
  38. Kurland, C. G., Andersson, D. I., Andersson, S. G. E., Bohman, K., Bouadloun, F., Ehrenberg, M., Jelenc, P. C. and Ruusala, T. (1984) Translational accuracy and bacterial growth. In Gene Expression, Alfred Benzon Symposium, Volume 19 (eds B. F. C. Clark and H. U. Peterson ), Munksgaard, Copenhagen, pp. 193–207.Google Scholar
  39. Laughrea, M. (1982) On the error theory of ageing: A review of the experimental data. Exp. Gerontol., 17, 305–317.CrossRefGoogle Scholar
  40. Lee, D. C., Bochner, B. R. and Ames, B. N. (1983) AppppA, heat-shock stress and cell oxidation. Proc. Natl Acad. Sci. USA, 80, 7496–7500.CrossRefGoogle Scholar
  41. Lewis, C. M. and Holliday, R. (1970) Mistranslation and ageing in Neurospora. Nature, 228, 877–880.CrossRefGoogle Scholar
  42. Martin, R. (1983) Translational accuracy and the fidelity of DNA replication in E. coli. PhD Thesis, CNAA, London.Google Scholar
  43. Medvedev, Zh. A. (1962) Ageing at the molecular level. In Biological Aspects of Ageing (ed. N. W. Shock ), Columbia University Press, New York, pp. 255–266.Google Scholar
  44. Medvedev, Zh. A. (1980) The role of infidelity of transfer of information for the accumulation of age changes in differentiated cells. Mech. Ageing Dev., 14, 1–14.CrossRefGoogle Scholar
  45. Menninger, J. R. (1977) Ribosome editing and the error catastrophe hypothesis of cellular ageing. Mech. Ageing Dev., 6, 131–142.CrossRefGoogle Scholar
  46. Menninger, J. R. (1983) Computer simulation of ribosome editing. J. Mol. Biol., 171, 383–399.CrossRefGoogle Scholar
  47. Miller, J. H. and Schmeissner, U. (1979) Genetic studies of the lac repressor X. Analysis of missense mutations in the lac I gene. J. Mol. Biol., 131, 223–248.CrossRefGoogle Scholar
  48. Miller, S. L. and Orgel, L. E. (1973) The Origins of Life on Earth, Prentice Hall, New York.Google Scholar
  49. Morrison, P. F., Aroesty, J., Creekmore, S. P., Barker, P. F. and Lincoln, T. L. (1983) A preliminary model of double minutes mediated by gene amplification. J. Theor. Biol., 104, 71–91.CrossRefGoogle Scholar
  50. Mount, D. W. (1980) The genetics of protein degradation in bacteria. Ann. Rev. Genet., 14, 279–319.CrossRefGoogle Scholar
  51. Murray, V. and Holliday, R. (1981) Increased error frequency of DNA polymerase from senescent human fibroblasts. J. Mol. Biol., 146, 55–76.CrossRefGoogle Scholar
  52. Neidhardt, F. C., van Bogelen, R. A. and Vaughn, V. (1984) The genetics and regulation of heat-shock proteins. Ann. Rev. Genet., 18, 295–329.CrossRefGoogle Scholar
  53. Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587– 595.CrossRefGoogle Scholar
  54. Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA, 49, 517–521.CrossRefGoogle Scholar
  55. Orgel, L. E. (1970) The maintenance of the accuracy of protein synthesis and its relevance to ageing: A correction. Proc. Natl Acad. Sci. USA, 67, 1476.CrossRefGoogle Scholar
  56. Orgel, L. E. (1973) Ageing of clones of mammalian cells. Nature, 243, 441–445.CrossRefGoogle Scholar
  57. Ozkaynak, E., Finlay, D. and Varshavsky, A. (1984) The yeast ubiquitin gene: head to tail repeats encoding a polyubiquitin precursor. Nature, 312, 663–666.CrossRefGoogle Scholar
  58. Prouty, W. K., Karnovsky, M. L. and Goldberg, A. L. (1975) Degradation of abnormal proteins in E. coli. Formation of protein inclusions in cells exposed to amino acid analogues. J. Biol. Chem., 250, 1112–1122.Google Scholar
  59. Rosenberger, R. F. (1982) Streptomycin-induced protein error propagation appears to lead to cell death in E. coli. IRCS Med. Sci., 10, 874–875.Google Scholar
  60. Rosenberger, R. F., Foskett, G. and Holliday, R. (1980) Error propagation in E. coli and its relation to cellular ageing. Mech. Ageing Dev., 13, 247–252.Google Scholar
  61. Rothstein, M. (1977) Recent developments in the age-related alterations of enzymes: A review. Mech. Ageing Dev., 6, 241–257.CrossRefGoogle Scholar
  62. Schimke, R. T., Brown, P. C., Kaufman, R. J., McGrogan, M., and Slate, D. L. (1980) Chromosomal and extrachromosomal localization of amplified dihydrofolate reductase genes in cultured mammalian cells. Cold Spring Harbor Symp. Quant. Biol., 45, 785–797.Google Scholar
  63. Schlesinger, M. J., Ashburner, M. and Tissieres, A. (eds) (1982) Heat Shock: From Bacteria to Man, Cold Spring Harbor Laboratory, New York.Google Scholar
  64. Thomas, P. G. and Mathews, M. B. (1984) Alterations of transcription and translation in Hela cells exposed to amino acid analogs. Mol. Cell. Biol., 4, 1063–1072.Google Scholar
  65. Varshavsky, A. (1981) On the possibility of metabolic control of replicon misfiring: Relationship to emergence of malignant phenotypes in mammalian cell lineages. Proc. Natl Acad. Sci. USA, 78, 3673–3677.CrossRefGoogle Scholar
  66. Varshavsky, A., Levinger, L., Lundin, O., Barsum, H., Ozkaynak, E., Swerdlow, P. and Finlay, D. (1983) Cellular and SV40 chromatin: replication, segregation, ubiquitination, nuclease hypersensitive sites, HMG-containing nucleosomes and heterochromatin-specific protein. Cold Spring Harbor Symp. Quant. Biol, 47, 511–528.Google Scholar
  67. Wahl, G. M., Padgett, R. A. and Stark, G. R. (1979) Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N (phosphonacetyl)-L- aspartate resistant hamster cells. J. Biol. Chem., 254, 8679–8689.Google Scholar
  68. Wilson, V. L. and Jones, P. A. (1983) DNA methylation decreases in ageing but not in immortal cells. Science, 220, 1055–1057.CrossRefGoogle Scholar
  69. Woolhouse, H. W. (1969) DNA polymerase, genetic variation and determination of the life span. In Proc. 8th Int. Congr. Gerontol., Vol. 1, pp. 162–166. Federation of American Societies for Experimental Biology, Washington, DC.Google Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations