Diversity and accuracy in molecular evolution: sketches past, present and future



Species are eternal. To be sure, any individual deviates somewhat from the original type; usually, for any given character within a species (body size, hairiness, visual acuity, etc.) there is an observable diversity. Biometric studies show that individual properties and performances follow more or less Gaussian distributions in a population as a result of various environmental perturbations. External influences, by slightly perturbing at one point or another the development of the organism, will endow the individual with special traits. The child does not resemble his parents exactly.


Translation Error Translation Apparatus Close Variant Avian Sarcoma Virus Translational Ambiguity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachinsky, A. G. (1980) The qualitative estimation of the influence of template processes ambiguity on the population fitness. In Mathematical Models of Evolutionary Genetics (in Russian) (ed. V. A. Ratner ), Academy of Sciences Press, Novosibirsk, pp. 49–65.Google Scholar
  2. Burnet, F. M. (1974) Intrinsic Mutagenesis: A Genetic Approach to Ageing, Medical and Technical Publishing Co., Lancaster.Google Scholar
  3. Clarke, P. H. (1978) Experiments in microbial evolution. In The Bacteria. A Treatise on Structure and Function. Vol. VI: Bacterial Diversity (eds. L.N. Ornston and J. R. Sokatch ), Academic Press, New York, pp. 137–218.Google Scholar
  4. Collett, M. S. and Erikson, R. L. (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl Acad. Sci. USA, 75, 2021–2024.CrossRefGoogle Scholar
  5. Darwin, C. (1859) Extract from an unpublished work on species by C. Darwin, Esq., J. Linn. Soc. Lond. (Zool.), 3,46-50. Reprinted in Evolutionary Genetics (1977) (ed. D. L. Jameson), Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, pp. 22–31.Google Scholar
  6. Dequard-Chablat, M. and Coppin-Raynal, E. (1984) Increase of translational fidelity blocks sporulation in the fungus Podospora anserina. Mol. Gen. Genet., 195, 294–299.CrossRefGoogle Scholar
  7. Domingo, E., Sabo, D., Taniguchi, T. and Weissman, C. (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell, 13, 735–744.CrossRefGoogle Scholar
  8. Dover, G. (1982) Molecular drive: a cohesive mode of species evolution. Nature, 299, 111–117.CrossRefGoogle Scholar
  9. Gallant, J. A. (1979) Stringent control in E. coli. Ann. Rev. Genet., 13, 393–415.CrossRefGoogle Scholar
  10. Garel, J.-P. (1974) Functional adaptation of tRNA population. J. Theoret. Biol., 43, 211–225.CrossRefGoogle Scholar
  11. Gibbs, J. B., Sigal, I. S., Poe, M. and Scolnick, E. M. (1984) IntrinsicGTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc. Natl Acad. Sci. USA, 81, 5704–5708.CrossRefGoogle Scholar
  12. Glogoczowski, M. (1981) Open letter to biologists. Fundamenta Scienciae, 2, 233–254.Google Scholar
  13. Gould, S. J. (1980) Ever Since Darwin, Penguin Books, Harmondsworth and New York.Google Scholar
  14. Grassé, P.-P. (1978) Biologie Moléculaire, Mutagenése et Evolution, Masson, Paris.Google Scholar
  15. Harley, C. B., Pollard, J. W., Chamberlain, J. W., Stanners, C. P. and Goldstein, S. (1980) Protein synthetic errors do not increase during aging of cultured human fibroblasts. Proc. Natl Acad. Sci. USA, 77, 1885–1889.CrossRefGoogle Scholar
  16. Helinski, D. R. and Yanofsky, C. (1963) A genetic and biochemical analysis of second site reversion. J. Biol Chem., 238, 1043–1048.Google Scholar
  17. Hinshelwood, C. N. (1946) The Chemical Kinetics of the Bacterial Cell, Clarendon Press, Oxford.Google Scholar
  18. Hoffman, G. W. (1974) On the origin of the genetic code and the stability of the translation apparatus. J. Mol. Biol., 36, 349–362.CrossRefGoogle Scholar
  19. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L. E. and van Westrenen, J. (1984). Chiral selection in poly(C)-directed synthesis of oligo (G). Nature, 310, 602–604.CrossRefGoogle Scholar
  20. Kimura, M. (1968) Evolutionary rate at the molecular level. Nature, 217, 624–626.CrossRefGoogle Scholar
  21. Kirkwood, T. B. L. and Holliday, R. (1975) The stability of the translation apparatus. J. Mol. Biol., 97, 257–265.CrossRefGoogle Scholar
  22. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E. andCech, T. R. (1982) Self-splicing RNA: autoexcision and autocyclisation of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147–157.Google Scholar
  23. Lerner, I. M. (1954) Genetic Homeostasis. John Wiley and Sons, New York.Google Scholar
  24. Margulis, L. and Crick, F. H. C. (1989) Plastic DNA: the ultimate endosymbiont. J. Artificial Biol., 3, 26–34.Google Scholar
  25. McLachlan, A. D. (1980) Pseudo-symmetric structural elements and the folding of domains. In Protein Folding (ed. R. Jaenicke ), Elsevier/North-Holland, Amsterdam, pp. 79–96.Google Scholar
  26. Muller, H. J. (1922) Variation due to change in the individual gene. Am. Nat., 56, 32–50. Reprinted in Classic Papers in Genetics (1961) 3rd edn (ed. J. A. Peters), Prentice-Hall, Englewood Cliffs, New Jersey, pp. 104–116.Google Scholar
  27. Ninio, J. (1977) Ageing and the control of accuracy. Trends in Biochem. Sci., 2 (8), N185–N186.CrossRefGoogle Scholar
  28. Ninio, J. (1979) Approches Moléculaires de l’Evolution, Masson, Paris. English translation. Molecular Approaches to Evolution, Pitman, London (1982) and Princeton University Press, Princeton (1983).Google Scholar
  29. Ninio, J. (1983) L’explosion des séquences: les années folies 1980–1990. Biochemical Systematics and Ecology, 11, 305–313.CrossRefGoogle Scholar
  30. Okada, H., Negoro, S., Kimura, H. and Nakamura, S. (1983) Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers. Nature, 306, 203–206.CrossRefGoogle Scholar
  31. Orgel, L. E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA, 49, 517–521.CrossRefGoogle Scholar
  32. Picard-Bennoun, M. (1982) Does translational ambiguity increase during cell differentiation? FEBS Lett. , 149, 167–170.CrossRefGoogle Scholar
  33. Pringle, J. W. S. (1953) The origin of life. In Symposia of the Society for Experimental Biology. Number VII: Evolution, The University Press, Cambridge, pp. 1–21.Google Scholar
  34. Rosset, R. and Gorini, L. (1969) A ribosomal ambiguity mutation. J. Mol. Biol., 39, 95–112.CrossRefGoogle Scholar
  35. Sonneborn, T. M. (1965) Degeneracy of the genetic code: extent, nature, and genetic implications. In Evolving Genes and Proteins (eds V. Bryson and H. J. Vogel ), Academic Press, New York, pp. 377–397.Google Scholar
  36. Wallace, A. R. (1859) On the tendency of varieties to depart indefinitely from the original type. J. Linn. Soc. Lond. (Zool.), 3, 53-62. Reprinted in Evolutionary Genetics (1977) (ed. D. L. Jameson), Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, pp. 21–31.Google Scholar
  37. Weill, J.-C. and Reynaud, C. A. (1980) Somatic darwinism in vivo. Bio Systems, 12, 23–25.CrossRefGoogle Scholar
  38. Woese, C. R. (1967) The Genetic Code, Harper, New York.Google Scholar
  39. Wright, S. (1955) Classification of the factors of evolution. Cold Spring Harbor Symp. Quant. Biol., 20, 16–24.Google Scholar
  40. Zhu, X. H. and Thang, M. D. (1985) Studies on the polymerization of o-aminoacids. 48: complete synthesis of the D form of E. coli DNA polymerase 1. Acta Chimica Sinica Shangai, 22, 1–327.Google Scholar
  41. Zuckerkandl, E. and Pauling, L. (1962) Molecular disease, evolution, and genetic heterogeneity. In Horizons in Biochemistry (eds M. Kasha and B. Pullman ), Academic Press, New York, pp. 189–225.Google Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations