Advertisement

Kinetic and probabilistic thinking in accuracy

Chapter

Abstract

The cell contains thousands of molecular species in permanent motion. The nucleic acids breathe. The proteins fold and unfold. Groups of atoms swing or rotate. Charges jump from one place to the other in the molecule. The environment threatens the cell in many ways. Yet the cell is able to reproduce itself accurately and to remain essentially unchanged throughout millions of generations. When DNA, the key molecule of heredity, is manufactured by the assembly of millions or billions of its elementary subunits, there may be less than one error in ten billion per added subunit. What are then the strategies used by the cell to achieve such a high degree of precision with rather unreliable components?

Keywords

Reaction Scheme Molecular Process Exonuclease Activity Nonsense Suppression Foreign Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardi, F. and Ninio, J. (1978) The accuracy of DNA replication. Biochimie, 60, 1083–1095.CrossRefGoogle Scholar
  2. Bernardi, F., Saghi, M., Dorizzi, M. and Ninio, J. (1979) A new approach to DNA polymerase kinetics. J. Mol. Biol., 129, 93–112.CrossRefGoogle Scholar
  3. Blomberg, C. (1977) A kinetic recognition process for tRNA at the ribosome. J. Theor. Biol., 66, 307–325.CrossRefGoogle Scholar
  4. Bohman, K., Ruusala, T., Jelenc, P. C. and Kurland, C. G. (1984) Kinetic impairment of restrictive streptomycin-resistant ribosomes. Mol. Gen. Genet., 198, 90–99.CrossRefGoogle Scholar
  5. Brutlag, D. and Kornberg, A. (1972) Enzymatic synthesis of deoxyribonucleic acid. XXXVI. A proofreading function for the 3′→5′ exonuclease activity in deoxyribonucleic acid polymerases. J. Biol. Chem., 247, 241–248.Google Scholar
  6. Caplan, A. B. and Menninger, J. R. (1979) Tests of the ribosomal editing hypothesis: Amino acid starvation differentially enhances the dissociation of peptidyl-tRNAs from the ribosome. J. Mol. Biol., 134, 621–637.CrossRefGoogle Scholar
  7. Carrier, M. J. and Buckingham, R. H. (1984) An effect of codon context on the mistranslation of UGU codons in vivo. J. Mol. Biol., 175, 29–38.CrossRefGoogle Scholar
  8. Clayton, L. K., Goodman, M. F., Branscomb, E. W. and Galas, D. J. (1979) Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J. Biol. Chem., 254, 1902–1912.Google Scholar
  9. Cooke, R. and Kuntz, I. D. (1974) The properties of water in biological systems. Ann. Rev. Biophys. Bioeng., 3, 95–126.CrossRefGoogle Scholar
  10. Dixon, M. and Webb, E. C. (1958) Enzymes, Longmans, London.Google Scholar
  11. Doubleday, O. P., Lecomte, Ph. J. and Radman, M. (1983) A mechanism for nucleotide selection associated with the pyrophosphate exchange activity of DNA polymerases. In Cellular Responses to DNA Damage (eds E. C. Friedberg and B. A. Bridges ), Alan R. Liss, New York, pp. 489–499.Google Scholar
  12. Dump, J. (1982) On the relations between error rates in DNA replication and elementary chemical rate constants. J. Theor. Biol., 94, 607–632.CrossRefGoogle Scholar
  13. Ehrenberg, M. and Blomberg, C. (1980) Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. Biophys. J., 31, 333–358.CrossRefGoogle Scholar
  14. Eldred, E. W. and Schimmel, P. R. (1972) Rapid deacylation by isoleucyl transfer ribonucleic acid synthetase of isoleucine-specific transfer ribonucleic acid aminoacylated with valine. J. Biol. Chem., 247, 2961–2964.Google Scholar
  15. Fersht, A. R. (1977) Enzyme Structure and Mechanism, Freeman and Co., San Francisco.Google Scholar
  16. Fersht, A. R. (1979) Fidelity of replication of phage 0X174 DNA by DNA polymerase III holenzyme: Spontaneous mutation by misincorporation. Proc. Natl Acad. Sci. USA, 76, 4946–4950.CrossRefGoogle Scholar
  17. Fersht, A. R. and Kaethner, M. M. (1976) Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing. Biochemistry, 15, 3342–3346.CrossRefGoogle Scholar
  18. Galas, D. J. and Branscomb, E. W. (1978) Enzymatics determinants of DNA polymerase accuracy. Theory of coliphage T4 polymerase mechanisms. J. Mol. Biol., 124, 653–687.CrossRefGoogle Scholar
  19. Gallant, J. and Foley, D. (1980) On the causes and prevention of mistranslation. In: Ribosomes Structure, Function and Genetics (eds G. Chambliss et al.), University Park Press, Baltimore, pp. 615–638.Google Scholar
  20. Goodman, M. F., Gore, W. C., Muzyczka, N. and Bessman, M. J. (1974) Studies on the biochemical basis of spontaneous mutation. EL Rate model for DNA polymerase-effected nucleotide misincorporation. J. Mol. Biol., 88, 423–435.CrossRefGoogle Scholar
  21. Gorini, L. (1971) Ribosomal discrimination of tRNAs. Nature New Biol. , 234, 261– 264.Google Scholar
  22. Gouy, M. and Grantham, R. (1980) Polypeptide elongation and tRNA cycling in Escherichia coli: a dynamic approach. FEBS Lett. , 115, 151–155.CrossRefGoogle Scholar
  23. Grossman, Z. (1984) Recognition of self and regulation of specificity at the level of cell populations. Immunol Rev. , 79, 119–138.CrossRefGoogle Scholar
  24. Grunberg-Manago, M. and Dondon, J. (1965) Influence of pH and S-RNA con-centration on coding ambiguities. Biochem. Biophys. Res. Commun. , 18, 517–522.CrossRefGoogle Scholar
  25. Guéron, M. (1978) Enhanced selectivity of enzymes of kinetic proofreading. American Scientist, 66, 202–208.Google Scholar
  26. Herbomel, P. and Ninio, J. (1980) Fidélité d’une réaction de polymérisation selon la proximité de l’équilibre. C.R. Acad. Se. Paris, Série D, 291, 881–884.Google Scholar
  27. Hopfield, J. J. (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl Acad. Sci. USA, 71, 4135–4139.CrossRefGoogle Scholar
  28. Hopfield, J. J. (1978) Origin of the genetic code: A testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc. Natl Acad. Sci. USA, 75, 4334–4338.CrossRefGoogle Scholar
  29. Hopfield, J. J. (1980) The energy relay: A proofreading scheme based on dynamic cooperativity and lacking all characteristic symptoms of kinetic proofreading in DNA replication and protein synthesis. Proc. Natl Acad. Sci. USA, 77, 5248–5252.CrossRefGoogle Scholar
  30. Hopfield, J. J., Yamane, T., Yue, Y. and Coutts, S. M. (1976) Direct experimental evidence for kinetic proofreading in amino acylation of tRNAIle. Proc. Natl Acad. Sci. USA, 73, 1164–1168.CrossRefGoogle Scholar
  31. Jelenc, P. C. and Kurland, C. G. (1979) Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl Acad. Sci. USA, 76, 3174–3178.CrossRefGoogle Scholar
  32. Jerne, N. K. (1974) Towards a network theory of the immune system. Ann. Immunol. (Inst. Pasteur), 125c, 373–389.Google Scholar
  33. Kremen, A. (1982) Information-theoretic significance of Gibbs energy supply to editing mechanisms. Biophys. J., 40, 149–154.CrossRefGoogle Scholar
  34. Kukko, E. and Heinonen, J. (1982) The intracellular concentration of pyrophosphate in the batch culture of Escherichia coli. Eur. J. Biochem., 127, 347–349.Google Scholar
  35. Kunkel, T. A., Schaaper, R. M., Beckman, R. A. and Loeb, L. A. (1981) On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. J. Biol. Chem., 256, 9883–9889.Google Scholar
  36. Kurland, C. G. (1978) The role of guanine nucleotides in protein biosynthesis. Biophys. J., 22, 373–392.CrossRefGoogle Scholar
  37. Laughrea, M. (1981) Speed-accuracy relationships during in vitro and in vivo protein biosynthesis. Biochimie, 63, 145–168.CrossRefGoogle Scholar
  38. Leipoldt, M. and Engel, W. (1983) Hidden breaks in ribosomal RNA of phylo- genetically tetraploid fish and their possible role in the diploidization process. Biochem. Genet., 21, 819–841.CrossRefGoogle Scholar
  39. McCulloch, W. S. (1960) The reliability of biological systems. In Self-organizing Systems (eds M. C. Yovits and S. Cameron ), Pergamon Press, New York, pp. 264–281.Google Scholar
  40. Malygin, E. G. and Yashina, L. N. (1980) Kinetic description of the error-correcting mechanism of bifunctional DNA polymerases. (In Russian.) Doklad. Akad. Nauk. SSSR, 250, 246–250.Google Scholar
  41. Menninger, J. R. (1983) Computer simulation of ribosome editing. J. Mol. Biol., 171, 383–399.CrossRefGoogle Scholar
  42. Mizraji, E. and Linn, J. (1984) Chemicomechanical transduction performed by enzymes activated by polymers. J. Theor. Biol., 108, 173–189.CrossRefGoogle Scholar
  43. Moore, E. F. and Shannon, C. E. (1956) Reliable circuits using less reliable relays. J. Franklin Inst., 262, 191–208.CrossRefGoogle Scholar
  44. Muzyczka, N., Poland, R. L. and Bessman, M. J. (1972) Studies on the biochemical basis of spontaneous mutation. 1. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator and wild type strains of bacteriophage T4. J. Biol Chem., 247, 7116–7122.Google Scholar
  45. Ninio, J. (1973) Recognition in nucleic acids and the anticodon families. Progress in Nucleic Acid Res. Mol. Biol, 13, 301–337.CrossRefGoogle Scholar
  46. Ninio, J. (1974) A semi-quantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. Evaluation of some molecular parameters of translation in vivo. J. Mol. Biol., 84, 297–313.CrossRefGoogle Scholar
  47. Ninio, J. (1975a) La précision dans la traduction génétique. In Ecole de Roscoff1974. L’Évolution des Macromolécules Biologiques (ed. C. Sadron ), C.N.R.S., Paris, pp. 51–68.Google Scholar
  48. Ninio, J. (1975b) Kinetic amplification of enzyme discrimination. Biochimie, 57, 587–595.CrossRefGoogle Scholar
  49. Ninio, J. (1977) Are further kinetic amplification schemes possible? Biochimie, 59, 759–760.CrossRefGoogle Scholar
  50. Ninio, J. (1981) Molecular evolution: a walk in the sequence space. In Food, Nutrition and Evolution (eds D. N. Walcher and N. Kretchmer ), Masson, New York, pp. 9–13.Google Scholar
  51. Ninio, J. and Chapeville, F. (1980) Recognition: the kinetic concepts. In Chemical Recognition in Biology (eds F. Chapeville and A. L. Haenni ), Springer-Verlag, Heidelberg, pp. 78–85.Google Scholar
  52. Ninio, J., Bernardi, F., Brun, G., Assairi, L., Lauber, M. and Chapeville, F. (1975) On the mechanism of nucleotide incorporation into DNA and RNA. FEBS Lett. , 57, 139–144.CrossRefGoogle Scholar
  53. Norris, A. T. and Berg, P. (1964) Mechanism of aminoacyl RNA synthesis: studies with isolated aminoacyl adenylate complexes of isoleucyl RNA synthetase. Proc. Natl Acad. Sci. USA, 52, 330–337.CrossRefGoogle Scholar
  54. Papanicolaou, C., Dorizzi, M. and Ninio, J. (1984) A memory effect in DNA replication. Biochimie, 66, 115–119.CrossRefGoogle Scholar
  55. Pestka, S., Marshall, R. and Nirenberg, M. (1965) RNA codewords and protein synthesis. V. Effect of streptomycin on the formation of ribosome-sRNA complexes. Proc. Natl Acad. Sci. USA, 53, 639–646.CrossRefGoogle Scholar
  56. Pingoud, A., Gast, F.-U., Block, W. and Peters, F. (1983) The elongation factor Tu from Escherichia coli, aminoacy1-tRNA, and guanosine tetraphosphate form a ternary complex which is bound by programmed ribosomes. J. Biol. Chem., 258, 14200–14205.Google Scholar
  57. Ratliff, F. (1972) Contour and contrast. Set Am. , 226 (6), 91–101.Google Scholar
  58. Rojas, A.-M., Ehrenberg, M., Anderson, S. and Kurland, C. G. (1984) ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol. Gen. Genet., 197, 36–45.Google Scholar
  59. Ruusala, T., Ehrenberg, M. and Kurland, C. G. (1982) Is there proofreading during polypeptide synthesis? EMBO J. , 1, 741–745.Google Scholar
  60. Saghi, M. and Dorizzi, M. (1982) Polymerization/excision kinetics of Escherichia coli DNA polymerase I. Stability in kinetic behaviour and variation of the rate constants with temperature and pH. Eur. J. Biochem., 123, 191–199.CrossRefGoogle Scholar
  61. Savageau, M. A. and Lapointe, D. S. (1981) Optimization of kinetic proofreading: a general method for derivation of the constraint relations and an exploration of a specific case. J. Theor. Biol., 93, 157–177.CrossRefGoogle Scholar
  62. Schwartz, V. S. and Lysikov, V. N. (1974) Physical mechanisms of ribosomal screen. (In Russian.) Doklady Akad Nauk SSSR, 217, 1446–1448.Google Scholar
  63. Spirin, A. S. (1978) Energetics of the ribosome. Progr. Nucl. Acid Res. Mol. Biol., 21, 39–62.CrossRefGoogle Scholar
  64. Thompson, R. C., Dix, D. R., Gershon, R. B. and Karim, A. M. (1981) A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes. J. Biol. Chem., 256, 81–86.Google Scholar
  65. Thompson, R. C. and Karim, A. M. (1982) The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP (γS). Proc. Natl Acad. Sci. USA, 79, 4922–4926.CrossRefGoogle Scholar
  66. Thompson, R. C. and Stone, P. J. (1977) Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl Acad. Sci. USA, 74, 198–202.CrossRefGoogle Scholar
  67. Twilt, J. C., Overbeek, G. P. and van Duin, J. (1979) Translational fidelity and specificity of ribosomes cleaved by cloacin DF13. Eur. J. Biochem., 94, 477–484.CrossRefGoogle Scholar
  68. Urbain, J., Wuilmart, C. and Cazenave, P.-A. (1981) Idiotypic regulation in immune networks. In: Contemporary Topics in Molecular Immunology (eds F. P. Inwan and W. J. Mandy), Vol. 8. Plenum Press, New York, pp. 113–148.Google Scholar
  69. van Slyke, D. D. and Cullen, G. E. (1914) The mode of action of urease and of enzymes in general. J. Biol. Chem., 19, 141–180.Google Scholar
  70. Volloch, V. Z., Rits, S. andTumerman, L. (1979) Pyrophosphate-condensing activity linked to nucleic acid synthesis. Nucl. Acids Res., 6, 1521–1534.Google Scholar
  71. von der Haar, F. and Cramer, F. (1976) Hydrolytic action of aminoacyl- tRNA synthetases from baker’s yeast: ‘chemical proofreading’ preventing acylation of tRNAile with misactivated valine. Biochemistry, 15, 4131–4138.CrossRefGoogle Scholar
  72. von Neumann, J. (1956) Probabilistic logics and the synthesis of reliable organisms from unreliable components. In Automata Studies (eds C. E. Shannon and J. McCarthy ), Princeton University Press, pp. 43–98.Google Scholar
  73. Winograd, S. and Cowan, J. D. (1963) Reliable Computation in the Presence of Noise, MIT Press, Cambridge, Massachusetts.Google Scholar
  74. Wreschner, D. H., James, T. C., Silverman, R. H. and Kerr, I. N. (1981) Ribosomal RNA cleavage, nuclease activation and 2–5A (ppp (A2′p)n A) in interferon-treated cells. Nucl. Acids Res., 9, 1571–1581.CrossRefGoogle Scholar
  75. Yarns, M. (1972a). Increased specificity in the aminoacylation reaction due to the use of parallel systems of ligands. Nature New Biol. , 239, 106–108.Google Scholar
  76. Yarns, M. (1972b) Phenylalanyl-tRNA synthetase and isoleucyl-tRNAphe: a possible verification mechanism for aminoacyl-tRNA. Proc. Natl Acad. Sci. USA, 69, 1915–1919.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1986

Authors and Affiliations

There are no affiliations available

Personalised recommendations