Skip to main content

Growth and interactions of salt-marsh species under different flooding regimes

  • Chapter
Vegetation between land and sea

Part of the book series: Geobotany ((GEOB,volume 11))

Abstract

Vertical zonation of plant growth is a most common feature of plants in salt marshes. It is usually related to the level and the salinity of the seawater during the tidal cycle. The precise nature of salt-marsh vegetation zonation has been described and analysed comprehensively (cf. Ranwell 1972; Chapman 1974; Beeftink 1977a). Recently Rozema et al. (1985b) stated seawater salinity to be the master factor governing saltmarsh zonation and succession. They regarded inundation of secondary importance.

Publication No. 386, Delta Institute for Hydrobiological Research, Yerseke, The Netherlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. A., 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology, 44, 445–456.

    Article  Google Scholar 

  • Ahmad, I., Lahrer F. & Stewart G. R., 1979. Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol., 82, 671–678.

    Article  CAS  Google Scholar 

  • Beeftink, A., 1985. Interaction between Limonium vulgare and Plantago maritima in the Plantagini-Limonietum association on the Boschplaat, Terschelling. Vegetatio, 61, 33–44.

    Article  Google Scholar 

  • Beeftink, W. G., 1965. De zoutvegetatie van ZW-Nederland beschouwd in Europees verband. Thesis Wageningen. Meded. Hogeschool, 65, (Dutch with an english summary).

    Google Scholar 

  • Beeftink, W. G., 1977a. The coastal salt marshes of western and northern Europe: an ecological and phytosociological approach. In: V. J. Chapman (ed.), Wet Coastal Ecosystems, pp. 109–155. Elsevier, Amsterdam.

    Google Scholar 

  • Beeftink, W. G., 1977b. Salt-marshes. In: R. S. K. Barnes (ed.). The Coastline, pp. 93–122. Wiley, London.

    Google Scholar 

  • Beeftink, W. G., 1985. Vegetation study as a generator for population biological and physiological research on salt marshes. Vegetatio, 62, 469–486.

    Article  Google Scholar 

  • Berendse, F., 1981. Competition and equilibrium in grassland communities. Thesis State University Utrecht.

    Google Scholar 

  • Braakhekke, W. G., 1980. On coexistence: a causal approach to diversity and stability in grassland vegetation. Thesis Agricultural University Wageningen.

    Google Scholar 

  • Broer, G. J. A. A., 1986. Hydrodynamiek van schorsystemen. Yerseke, Delta Instituut voor Hydrobiologisch Onder- zoek, Studentenverslagen Dl-1986, (unpublished report).

    Google Scholar 

  • Brümmer, 1974. Redoxpotentiale und Redoxprozesse von Mangan-Eisen und Schwefel Verbindungen in hydromorphen Boden und Sedimenten. Geoderma, 12, 207–222.

    Article  Google Scholar 

  • Carlson, P., R. Jr. & J. Forrest, 1982. Uptake of dissolved sulphide by Spartina alterniflora: edivence from sulfur isotope abundance ratios. Science, 216, 158–165.

    Article  Google Scholar 

  • Chapman, V. J., 1974. Salt marshes and salt deserts of the world. In: R. J. Reimold & W. Queen (eds.), Ecology of halophytes, pp. 3–22. Academic Press, London.

    Google Scholar 

  • Chater, E. H. & Jones H., 1957. Some observations on Spartina townsendii H. and J. Groves in the Dovey Estuary. J. Ecol, 45, 157–167.

    Article  Google Scholar 

  • Cooper, A., 1982. The effects of salinity and waterlogging on the growth and cation uptake of salt marsh plants. New Phytol, 90, 263–275.

    Article  CAS  Google Scholar 

  • De Wit, C. T., 1960. On Competition. Versl. Landbouwk. Onderz.66:–182.

    Google Scholar 

  • Dickson, D. M., Wyn Jones R. G. & Davenport J., 1980. Steady state osmotic adaptation in Ulva lactuca. Planta, 150, 158–165.

    Article  CAS  Google Scholar 

  • Ernst, W. H. O., 1978. Chemical soil factors determining plant growth. In: A. H. J. Freysen & J. W. Woldendorp (eds.). Structure and functioning of plant populations, pp. 155–187. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Flowers, T. J., Troke P. F. & Yeo A. J., 1977. The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol, 28, 89–121.

    Article  CAS  Google Scholar 

  • Fuchs, J. W. H. M., 1984. Structuur en productie van drie zoutvegetatietypen van het schor Stroodorpepolder (Zeeland) in relatie tot enige milieu-factoren. Studentenverslagen Delta Instituut voor Hydrobiologisch Onderzoek, Yerseke. No. D5-1984, (unpubUshed report).

    Google Scholar 

  • Giurgevich, J. R. & Lloyd Dunn E., 1981. A comparative analysis of the CO2 and water vapor responses of two Spartina species from Georgia coastal marshes. Est. Coast.Shelf Sci., 12, 561–568.

    Article  Google Scholar 

  • Gleason, M. L. & Zieman J. C., 1981. Influence of tidal inundation on internal oxygen supply of Spartina alterniflora and Spartina patens. Est. Coast. Shelf Sci., 13: 47–57.

    Article  Google Scholar 

  • Gorham, H., Hughes L. & Wyn Jones R. G., 1981. Low- molecular-weight carbohydrates in some salt-stressed plants. Physiol. Plant. 53, 27–33.

    Article  CAS  Google Scholar 

  • Greenway, H. & Munns R., 1980. Mechanisms of salt tolerance in nonhalophytes. Ann. Rev. Plant Physiol, 31, 149–190.

    Article  CAS  Google Scholar 

  • Groenendijk, A. M., 1985. Ecological consequences of tidal management for the salt marsh vegetation. Vegetatio, 62, 41. 5–424.

    Google Scholar 

  • Groenendijk, A. M., 1987. Ecological consequences of a storm-surge barrier in the Oosterschelde: the salt marshes. Thesis, Utrecht.

    Google Scholar 

  • Haines, B. L. & Dunn E. L., 1976. Growth and resource allocation responses of Spartina alterniflora Loisel to three levels of NH4-N, Fe and NaCl in soluble culture. Bot. Gaz., 137, 224–230.

    Article  CAS  Google Scholar 

  • Harper, J. L., 1977. Population biology of plants, pp. 83–147. Academic Press, London.

    Google Scholar 

  • Havill, D. C., Ingold A. & Pearson J., 1985. Sulphide tolerance in coastal halophytes. Vegetatio 62, 279–285.

    Article  Google Scholar 

  • Howes, B. L., Howarth R. W., Teal J. M. & Valiela I., 1981. Oxidation-reduction potentials in a salt marsh: spatial patterns and interactions with primary production. Limnol Oceanogr., 26, 350–360.

    Article  Google Scholar 

  • Ingold, A., 1982. The effects of sulphide toxity on the distribution of higher plant species in sah marshes. Ph.D. thesis. University of London.

    Google Scholar 

  • Ingold, A. & Havill D. C., 1984. The influence of sulphide on the distribution of higher plants in salt marshes. J. Ecol, 72, 1043–1054.

    Article  CAS  Google Scholar 

  • Jennings, D. H., 1976. The effects of sodium chloride on higher plants. Biol Rev, 51, 453–486.

    Article  CAS  Google Scholar 

  • Jones, R., 1975. Comparative studies of growth and distribution in relation to waterlogging. VII. The uptake of phosphorus by dune and dune slack plants. J. Ecol, 63, 109–116.

    Article  CAS  Google Scholar 

  • Ketner, P., 1972. Primary production of salt marsh communities on the island of Terschelling in the Netherlands. Thesis Catholic University Nijmegen.

    Google Scholar 

  • König, D., 1948. Spartina townsendii and der Westküste von Schleswig-Holstein. Planta, 36, 34–70.

    Article  Google Scholar 

  • Kuramoto, R. T. & Brest D. E., 1979. Physiological response to salinity by four salt marsh plants. Bot. Gaz., 140, 295–298.

    Article  Google Scholar 

  • Larkum, A. W. D. & Loughman B. C., 1969. Anaerobic phosphate uptake by barley plants. J. Exp. Bot., 62, 12–24.

    Article  Google Scholar 

  • Linthurst, R. A., 1980. An evaluation of aeration, nitrogen, pH and salinity as factors affecting Spartina alterniflora growth: a summary. In: V. S. Kennedy (ed.), Estuarine perspectives, 236–247. Academic Press, New York.

    Google Scholar 

  • Linthurst, R. A. & Seneca E. D., 1980. The effects of standing water and drainage potential on the Spartina alterniflora-substrate complex in a North Carolina salt- marsh. Est. Coast. Mr. Sci., 11, 41–52.

    Article  CAS  Google Scholar 

  • Mendelssohn, I. A. & Seneca E. D., 1980. The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina. Est. Coast. Mar. Sci., 11, 27–40.

    Article  Google Scholar 

  • Nieuwenhuize, J., 1976. Analyse-methoden voor grond en gewas. Delta Instituut voor Hydrobiologisch Onderzoek, Yerseke, (unpublished report).

    Google Scholar 

  • Pearcy, R. W., Tumosa N. & Williams K., 1981. Relationships between growth, photosynthesis and competitive interactions for a C3 and C4 plant. Oecologia (Berl) 48, 371–376.

    Article  Google Scholar 

  • Pearcy, R. W. & Ustin S. L., 1984. Effects of salinity on growth and photosynthesis of three California tidal marsh species. Oecologia (Berl), 62, 68–73.

    Article  Google Scholar 

  • Ponnamperuma, F. N., 1972. The chemistry of submerged soils. Adv. Agron., 24, 29–36.

    Article  CAS  Google Scholar 

  • Ranwell, D. S., 1972. Ecology of salt marshes and sand dunes Chapman & Hall, London.

    Google Scholar 

  • Ranwell, D. S., Bird E. C. F., Hubbard J. C. E. & Stebbings R. E., 1964. Spartina salt marshes in southern England. V. Tidal submergence and chlorinity in Poole Harbour. J. Ecol, 52, 627–641.

    Article  Google Scholar 

  • Roozen, A. J. M. & Westhoff V., 1985. A study on long term salt-marsh succession using permanent plots. Vegetatio, 61, 23–32.

    Article  Google Scholar 

  • Rozema, J. & Blom B., 1977. Effects of salinity and inundation on the growth of Agrostis stolonifera and Juncus gerardii. J. Ecol, 65, 213–222.

    Article  CAS  Google Scholar 

  • Rozema, J., & Gude H., 1982. An ecophysiological study of the salt secretion of four halophytes. New Phytol, 89, 201–217.

    Article  Google Scholar 

  • Rozema, J., Luppes E. & Broekman R., 1985a. Differential response of salt marsh species to variations of iron and manganese. Vegetatio, 62, 293–302.

    Article  Google Scholar 

  • Rozema, J., Bijwaard P., Prast G. & Broekman R., 1985b. Ecophysiological adaptations of coastal halophytes from foredunes and salt marshes. Vegetatio, 62, 499–522.

    Article  Google Scholar 

  • Schat, H., 1978. Populatiebiologie van Salicornia stricta en Salicornia brachystachya en van enkele andere soorten op de schorren ten zuiden van Bergen op Zoom. Yerseke, Delta Instituut voor Hydrobiologisch Onderzoek, Studen- tenrapport no. D3-1978, (unpublished report).

    Google Scholar 

  • Sekiya, J., Schmidt A., Wilson L. G. & Fiber P., 1982. Emission of hydrogen sulphide by the leaf tissue in response to L-Cysteine. Plant Physiol, 70, 430–436.

    Article  PubMed  CAS  Google Scholar 

  • Singer, C. E. & Havill D. C., 1985. Manganese as an ecological factor in sah marshes. Vegetatio, 62, 287–292.

    Article  Google Scholar 

  • Smart, R. M., 1982. Distribution and environmental control of productivity and growth form of Spartina alterniflora (Loisel.). In: D. N. Sen & K. S. Rajpurohit (eds.). Contributions to the ecology of halophytes, pp. 127–142. Junk, The Hague.

    Google Scholar 

  • Steiner, A. A., 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil, 15, 134–144.

    Article  CAS  Google Scholar 

  • Stelzer, R. & Lauchli A., 1978. Salt- and flooding tolerance of Puccinellia peisonis. III. Distribution and location of ions in the plant. Z. Pflanzenphysiol., 88, 437–448.

    CAS  Google Scholar 

  • Stewart, G. R., Lahrer, F., Ahmad I. & Lee J. A., 1979. Nitrogen metabolism and salt tolerance in higher plant halophytes. In: R. L. Jefferies & A. J. Davies (eds.). Ecological processes in coastal environments, pp. 229– 241. Blackwell, Oxford.

    Google Scholar 

  • Van den Bergh, J. P., 1979. Changes in the composition of mixed populations of grassland species. In: M. J. A. Werger (ed.). The study of vegetation, pp. 57–80. Junk, The Hague.

    Google Scholar 

  • Van den Bergh, J. P. & Braakhekke W. G., 1978. Coexistence of plant species by niche differentiation. In: A. H. J. Freysen & J. W. Woldendorp (eds.). Structure and functioning of plant populations, pp. 125–138. North-Holland Publ. Co., Amsterdam.

    Google Scholar 

  • Van Steen, A., 1982. Bepaling van de invloed van getijreductie op een aantal abiotische faktoren en op de groei van een aantal schorreplanten. VEGIN Studentenrapport, Yerseke-Middelburg. No. 2-1982, (unpubhshed report).

    Google Scholar 

  • Vink-Lievaart, M. A., 1983. Bepaling van ondergrondse biomassa en produktie van een aantal schorreplanten. Yerseke, Delta Instituut voor Hydrobiologisch Onderzoek, Rapporten en Verslagen 1983-1, (unpubhshed report).

    Google Scholar 

  • Von Weihe, K., 1980. Konkurrenzvorgänge bei der Aussüssung von Soden des Puccinellia maritimae. Jahresbericht Institut für angewandte Botanik, Hamburg, 95–96, 232–250.

    Google Scholar 

  • Waisel, Y., 1972. Biology of halophytes. Academic Press, New York, 395 pp.

    Google Scholar 

  • Waisel, Y., 1972. Biology of halophytes. Academic Press, New York, 395 pp.

    Google Scholar 

  • Wyn Jones, R. G. & Storey R., 1981. Betains. In: L. G. Paleg & D. Aspinall (eds.). Physiology and biochemistry of drought resistance in plants, pp. 171–204. Academic Press, Sydney.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. W. Junk Publishers, Dordrecht/Boston/Lancaster

About this chapter

Cite this chapter

Groenendijk, A.M., Spieksma, J.G.J., Vink-Lievaart, M.A. (1987). Growth and interactions of salt-marsh species under different flooding regimes. In: Huiskes, A.H.L., Blom, C.W.P.M., Rozema, J. (eds) Vegetation between land and sea. Geobotany, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4065-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4065-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8305-8

  • Online ISBN: 978-94-009-4065-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics