Skip to main content

Decomposition of standing and fallen litter of halophytes in a Dutch salt marsh

  • Chapter
Vegetation between land and sea

Part of the book series: Geobotany ((GEOB,volume 11))

Abstract

Decomposition of morphological parts of Triglochin maritima, Limonium vulgare, Halimione portulacoides and Spartina anglica was studied in an estuarine salt marsh in the SW Nethrrlands for 6–8 months from September onwards. In stands of each species decomposition was studied both of litter in mesh bags located on the marsh surface and of litter in bags hanging in the (dead) canopy. Decomposition of litter types followed an exponential pattern of decay: instantaneous decay rates varied from 0.0016 per day for Limonium flowering-spike litter in the canopy habitat to 0.0103 per day for Triglochin leaf-litter on the sediment surface. Leaf litter decomposed significantly faster than stem or flowering spike litter. Decay rates of corresponding plant parts differed significantly between some but not all species. Four of the eight litter types showed a significant habitat effect: a lower decay rate in the canopy habitat. However, this effect was relatively small: maximal 20% ash-free dry weight remaining at the end of the study period for Limonium leaf litter. The chemistry of the litter substrate seemed to be the main factor affecting decomposition rate. In all litter types lignin and nitrogen concentration increased with time. The instanteous decay rate was for both habitats inversely correlated with initial lignin content and for the surface habitat also with the initial lignin-to-nitrogen ratio. It seems that differences in decay rates between the two habitats depend on lignin content of the litter: the higher the initial lignin concentration, the greater the differnce in decay rate.

Communication No. 381 for the Delta Institute for Hydro-biological Research, Yerseke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, P., 1978. Geographical variation in British salt marsh vegetation. J. Ecol., 66: 339–366.

    Article  Google Scholar 

  • Armstrong, W., Wright, E. K., Lythe, S. & Gaynard, T. J., 1985. Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt marsh. J. Ecol. 73: 323–339.

    Article  Google Scholar 

  • Bakker, J. P., 1985. The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Vegetatio 62: 391–398.

    Article  Google Scholar 

  • Beeftink, W. G., 1966. Vegetation and habitat of the salt marshes and beach plains in the south-western part of the Netherlands. Wentia 15: 83–108.

    Google Scholar 

  • Beeftink, W. G., 1977. The coastal salt marshes of western and northern Europe: an ecological and phytosocio-logical approach. In: Wet coastal ecosystems (ed. V. J. Chapman ), Elsevier, Amsterdam: 109–155.

    Google Scholar 

  • Beeftink, W. G., 1985a. Vegetation study as a generator for population biological and physiological research on salt marshes. Vegetatio 62: 469–486.

    Article  Google Scholar 

  • Beeftink, W. G., 1985b. Population dynamics of annual Salicornia species in the tidal salt marshes of the Oosterschelde, The Netherlands. Vegetatio 62: 469–486.

    Article  Google Scholar 

  • Beeftink, W. G., Daane, M. C., van Liere, J. M. & Nieuwenhuize, J., 1977. Analysis of estuarine soil gradients in salt marshes of the south-western Netherlands with special reference to the Scheldt estuary. Hydrobiologia 52: 93–106.

    Article  CAS  Google Scholar 

  • Beeftink, W. G., Daane, M. C., de Munck, W. & Nieuwen- huize, J., 1978. Aspects of population dynamics in Halimione portulacoides communities. Vegetatio 36: 31–43.

    Article  Google Scholar 

  • Benner, R., Maccubbin, A. E. & Hodson, R. E., 1984. Anaerobic biodegradation of the lignin and polysac-charide components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol. 47: 998–1004.

    PubMed  CAS  Google Scholar 

  • Benner, R., & Hodson, R. E., 1985. Microbical degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar. Ecol. Progr. Ser. 23: 221–230.

    Article  CAS  Google Scholar 

  • Benner, R., Moran, M. A. & Hodson, R. E., 1985. Effects of pH and plant source on lignocellulose biodégradation rates in two wetland ecosystems, the Okefenokee Swamp and a Georgia salt marsh. Limnol. Oceanogr. 30: 489–499.

    Article  CAS  Google Scholar 

  • Binet, P., 1985. Salt resistance and the environment of the cell wall of some halophytes. Vegetatio 61: 231–240.

    Article  Google Scholar 

  • Bishop, O. N., 1985. Statistic for Biology. Longman, Harlow.

    Google Scholar 

  • Boon, J. J. & Haverkamp, J., 1982. Pyrolysis mass spectrometry of intact and decomposed leaves of Nuphar variegatum and Zostera marina, and some archeological eelgrass samples. Hydrobiologia 16: 71–82.

    Article  CAS  Google Scholar 

  • Brock, Th. C. M., De Lyon, M. J. H., Van Laar, E. M. J. M. & Van Loon, E. M. M., 1985. Field studies on the breakdown of Nuphar lutea (L.) Sm. (Nymphaeaceae) and a comparison of three mathematical models for organic weight loss. Aquat. Bot. 21: 1–22.

    Article  Google Scholar 

  • Brock, Th. C. M., De Lyon, M. J. H., Van Laar, E. M. J. M. & Van Loon, E. M. M., 1985. Field studies on the breakdown of Nuphar lutea (L.) Sm. (Nymphaeaceae) and a comparison of three mathematical models for organic weight loss. Aquat. Bot. 21: 1–22.

    Article  Google Scholar 

  • Buth, G. J. C., Verdonschot, P. F. M. & de Wolf, L., 1982. Decomposition of three halophytes in different habitats of an Eastern Scheldt salt marsh. Hydrobiol. Bull. 16: 102–112.

    Article  Google Scholar 

  • Buth, G. J. C. & de Wolf, L., 1985. Decomposition of Spartina anglica, Elytrigia pungens and Halimione portulacoides in a Dutch salt marsh in association with faunal and habitat influences. Vegetatio 62: 337–355.

    Article  Google Scholar 

  • Chapman, V. J., 1974. Sah marshes and salt deserts of the world, 2nd ed., J. Cramer, Bremerhaven.

    Google Scholar 

  • Davy, A. J. & Smith, H., 1985. Population differentation in the life-history characteristics of salt-marsh annuals. Vegetatio 61: 117–125.

    Article  Google Scholar 

  • Deshmukh, L, 1985. Decomposition of grasses in Nairobi National Park, Kenya. Oecologia 76: 147–149.

    Article  Google Scholar 

  • Dijkema, K. S., Beeftink, W. G., Doody, J. P., Géhu, J. M., Heijdeman, B. & Rivas Martinez, S., 1984. Salt marshes in Europe. Council of Europe. Nature and Environment series 30, Strasbourgh.

    Google Scholar 

  • Douce, G. K. & Crossley, D. A., Jr., 1982. The effect of soil fauna on litter mass loss and nutrient loss dynamics in artic tundra at Barrow, Alaska. Ecology 63: 523–537.

    Article  Google Scholar 

  • Drifmeyer, J. E. & Rublee, P. A., 1981. Mn, Fe, Cu and Zn in Spartina alterniflora detritus and microorganisms. Bot. Mar. 24: 251–256.

    Article  CAS  Google Scholar 

  • Frasco, B. A. & Good, R. E., 1982. Decomposition dynamics of Spartina alterniflora and Spartina patens in a New Jersey salt marsh. Amer. J. Bot. 69: 402–406.

    Article  Google Scholar 

  • Gallagher, J. L., Kibby, H. V. & Skirvin, K. W., 1984. Community respiration of decomposing plants in Oregon estuarine marshes. Est. Coast. Sh. Sc. 18: 421–431.

    Article  CAS  Google Scholar 

  • Geldermalsen, L. A. van & Groenendijk, A. M., 1982. Decomposition experiments with Spartina anglica leaves. Neth.J. Sea Res. 15: 340–348.

    Article  Google Scholar 

  • Godshalk, G. L. & Wetzel, R. G., 1978. Decomposition of aquatic angiosperms. II. Particulate components. Aquat. Bot. 5: 301–327.

    Article  CAS  Google Scholar 

  • Goering, H. K. & van Soest, P. J., 1970. Forage fiber analysis (apparatus, reagents, procedures, and some applications). U.S. Dept. Agric., Agric. Res. Serv., Agric. Handb. 379.

    Google Scholar 

  • Good, R. E., Good, N. F. & Frasco, B. R., 1982. A review of primary production and decomposition dynamics of the below-ground marsh component. In: Estuarine comparisons. Acad. Press, New York: 139–158.

    Google Scholar 

  • Gray, A. J., 1985. Adaptation in perennial coastal plants — with particular reference to heritable variation in Puccinellia maritima and Ammophila arenaria. Vegetatio 61: 179–188.

    Article  Google Scholar 

  • Groenendijk, A. M., 1984. Primary production of four dominant salt-marsh angiosperms in the SW Netherlands. Vegetatio 57: 143–152.

    Article  Google Scholar 

  • Groenendijk, A. M., 1985. Ecological consequences of tidal management for the salt-marsh vegetation. Vegetatio 62: 415–424.

    Article  Google Scholar 

  • Groenendijk, A. M., 1986. Establishment of a Spartina anglica population on a tidal mudflat: a field experiment. J. Environm. Manag., 22: 1–12.

    Google Scholar 

  • Groenendijk, A. M. & Vink-Lievaart, M. A., 1987. Biomass and production on a Dutch salt marsh: emphasis on the below-ground component. Vegetatio 70: 21–28.

    Google Scholar 

  • Hodson, R. E., Christian, R. R. & Maccubbin, A. E., 1984. Lignocellulose and lignin in the salt marsh grass Spartina alterniflora: initial concentrations and short-term, post- depositional changes in detrital matter. Mar. Biol. 81: 1–7.

    Article  CAS  Google Scholar 

  • Huiskes, A. H. L., van Soelen, J. & Markusse, M., 1985. Field studies on the variability of populations of Aster tripolium L. in relation to salt-marsh zonation. Vegetatio 61: 163–169.

    Article  Google Scholar 

  • Jackson, D., Long, S. P. & Mason, C. F., 1986. Net primary production, decomposition and export of Spartina anglica on a Suffolk salt-marsh. J. Ecol. 74: 647–662.

    Article  Google Scholar 

  • Jensen, A., 1985a. On the ecophysiology of Halimione portulacoides. Vegetatio 61: 231–240.

    Article  Google Scholar 

  • Jensen, A., 1985b. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio 60: 37–48.

    Article  Google Scholar 

  • Josselyn, M. N. & Mathieson, A. C., 1980. Seasonal influx and decomposition of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71: 197–208.

    CAS  Google Scholar 

  • Long, S. P., 1983. C4 photosynthesis at low temperatures. Plant, Cell and Environ. 6: 345–363.

    CAS  Google Scholar 

  • Maccubbin, A. E. & Hodson, R. E., 1980. Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl. Environm. Microbiol. 40: 735–740.

    CAS  Google Scholar 

  • Marinucci, A. C., 1982. Trophic importance of Spartina alterniflora production and decomposition to the marsh- estuarine ecosystem. Biol. Cons. 22: 35–58.

    Article  Google Scholar 

  • Marinucci, A. C. & Bartha, R., 1982a. Biomagnification of Aroclor 1242 in decomposing Spartina litter. Appl. Environ. Microbiol. 44: 669–677.

    PubMed  CAS  Google Scholar 

  • Marinucci, A. C. & Bartha, R., 1982b. A component model of decomposition of Spartina alterniflora in a New Jersey salt marsh. Can. J. Bot. 60: 1618–1624.

    Article  Google Scholar 

  • Marinucci, A. C., Robbie, J. E. & Helfrich, J. V. K., 1983. Effect of litter nitrogen on decomposition and microbial biomass in Spartina alterniflora. Microbial. Ecol. 9: 27–40.

    Article  Google Scholar 

  • McKee, K. L. & Seneca, E. D., 1982. The influence of morphology in determining the decomposition of two salt marsh macrophytes. Estuaries 5: 302–309.

    Article  Google Scholar 

  • Meentemeyer, V., 1978. Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465–472.

    Article  CAS  Google Scholar 

  • Melillo, J. M., Aber, J. D. & Muratore, J. F., 1982. Nitrogen and lignin control of hardwood leaf litter decompositon dynamics. Ecology 63: 621–626.

    Article  CAS  Google Scholar 

  • Melillo, J. M., Naiman, R. J., Aber, J. D. & Linkins, A. E., 1984. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull. Mar. Sci. 35: 341–356.

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., Cai Rodriguez, R. M. & Groene, L. C., 1985. Influence of rain, tidal wetting and relative humidity on release of carbon dioxide by standing-dead salt-marsh plants. Oecologia 68: 73–79.

    Article  Google Scholar 

  • Pomeroy, L. R. & Wiegert, R. G., 1981. The ecology of a salt marsh. Ecological Studies 38. Springer-Verlag, New York.

    Google Scholar 

  • Rice, D. L., 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemsitry. Mar. Ecol. Prog. Ser. 9: 153–162.

    Article  CAS  Google Scholar 

  • Rice, D. L. & Hanson, R. B., 1984. A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35: 326–340.

    Google Scholar 

  • Rozema, J., Bijwaard, P., Prast, G. & Broekman, R., 1985. Ecophysiological adaptations of coastal halophytes from foredunes and sah marshes. Vegetatio 62: 499–521.

    Article  Google Scholar 

  • Schlesinger, W. H., 1985. Decomposition of chaparral shrub foliage. Ecology 66: 1353–1359.

    Article  Google Scholar 

  • Swift, M. J., Heal, O. W. & Anderson, J. M., 1979. Decomposition in Terrestrial Ecosystems. Blackwell, Oxford.

    Google Scholar 

  • Turner, R. E., 1976. Geographic variations in salt marsh macrophyte production: a review. Contrib. Mar. Sci. 20: 47–68.

    Google Scholar 

  • Tyler, G., 1971. Distribution and turnover of organic matter and minerals in a shore meadow ecosystem. Oikos 22: 265–291.

    Article  CAS  Google Scholar 

  • Valiela, L, Teal, J. M., Allen, S. E., van Etten, R., Goehringer, D. & Volkmann, S., 1985. Decomposition in sah marsh ecosystems: the phases and major factors affecting disappearance of above-ground organic matter. J. Exp. Mar. Biol. 89: 29–54.

    Article  CAS  Google Scholar 

  • Watkinson, A. R. & Davy, A. J., 1985. Population biology of salt marsh and sand dune annuals. Vegetatio 62: 487–497.

    Article  Google Scholar 

  • Westhoff, V., 1985. Nature management in coastal areas of Western Europe. Vegetatio 62: 523–532.

    Article  Google Scholar 

  • White, D. A. & Trapani, J. M., 1982. Factors influencing disappearance of Spartina alterniflora from litterbags. Ecology 63: 242–245

    Article  Google Scholar 

  • Wieder, R. K. & Lang, G. E., 1982. A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63: 1636–1642.

    Article  Google Scholar 

  • Wilson, J. O., Buchshaum, R., Valiela, L & Swain, T., 1986. Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter of Spartina alterniflora. Mar. Ecol. Progr. Ser. 29: 177–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht/Boston/Lancaster

About this chapter

Cite this chapter

Buth, G.J.C., Voesenek, L.A.C.J. (1987). Decomposition of standing and fallen litter of halophytes in a Dutch salt marsh. In: Huiskes, A.H.L., Blom, C.W.P.M., Rozema, J. (eds) Vegetation between land and sea. Geobotany, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4065-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4065-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8305-8

  • Online ISBN: 978-94-009-4065-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics