Skip to main content

The individualistic and community-unit concepts as falsifiable hypotheses

  • Chapter

Part of the book series: Advances in vegetation science ((AIVS,volume 8))

Abstract

This study reformulates the community-unit and individualistic concepts of plant communities as hypotheses concerning the distribution of species’ boundaries along a gradient. These hypotheses are tested by an analysis of deviance on data derived from a direct-gradient analysis of a freshwater marsh plant community in Breckenridge, Quebec, Canada. Boundaries are clustered at certain intervals along the gradient (p < 0.001), contradicting the individualistic hypothesis. Upper boundaries are not consistently clustered at the same intervals as lower boundaries (p < 0.001), contradicting the community-unit hypothesis. Thus, neither of the two usual models of community structure explain the patterns found in Breckenridge Marsh, suggesting that the historical dichotomy is too limited. Hypotheses of pattern should be tested using inferential statistics. Hypotheses of mechanism should be tested by experimentation. The way out of the community-unit vs. individualistic community debate is to deny the dichotomy and to consider multiple working hypotheses of community structure.

Nomenclature as in Gleason & Cronquist (1963), Manual of vascular plants of northeastern United States and adjacent Canada, Boston, unless otherwise indicated except for the the grasses which are from Dore & McNeill (1980), Grassses of Ontario, Quebec.

The statistical advice of Dr L. Lefkovitch is gratefully acknowledged. We also thank Mme. Claire Gauthier for the use of her property, C. Kettle for assistance with data collection as well as Robin Day and Dr P. Catling for assistance with identification of species. This research was supported by a National Sciences and Engineering Research Council of Canada operating grant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, M. P., 1985. Continuum concept, ordination methods, and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Austin, M. P., 1987. Models for the analysis of species’ response to environmental gradients. Vegetatio 69: 35–45.

    Article  Google Scholar 

  • Austin, M. P., Cunningham, R. B. & Flemming, P. M., 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55: 11–27.

    Article  Google Scholar 

  • Cain, S. A., 1947. Characteristics of natural areas and factors in their development. Ecol. Monogr. 17: 185–200.

    Google Scholar 

  • Clements, E. E., 1916. Plant succession: an analysis of the development of vegetation. Publ. Carneg. Inst. 242.

    Google Scholar 

  • Connell, H. H., 1972. Community interactions in marine rocky intertidal shores. Ann. Rev. Ecol. Syst. 3: 169–192.

    Google Scholar 

  • Connell, H. H., 1983. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122: 661–696.

    Article  Google Scholar 

  • Curtis, J. T., 1955. A prairie continuum in Wisconsin. Ecology 36: 558–566.

    Article  Google Scholar 

  • Dale, M. R. T., 1984. The contiguity of upslope and downslope boundaries in a zoned community. Oikos 43: 92–96.

    Article  Google Scholar 

  • Egler, F. E., 1947. Arid southwest Oahu vegetation, Hawaii. Ecol. Monogr. 17: 383–435.

    Google Scholar 

  • Gleason, H. A., 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club. 53: 7–26.

    Google Scholar 

  • Gleason, H. A., 1939. The individualistic concept of the plant association. Am. Midl. Na. 21: 92–110.

    Google Scholar 

  • Grace, J. B. & Wetzel, R. G., 1981. Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Am. Nat. 118: 463–474.

    Article  Google Scholar 

  • Hutchinson, G. E., 1975. A treatise on limnology, vol. 3. Limnological botany. Wiley, New York.

    Google Scholar 

  • Karson, M. J., 1982. Multivariate statistical methods. Iowa State Univ. Press, Iowa.

    Google Scholar 

  • Keddy, P. A., 1983. Shoreline vegetation in Axe Lake, Ontario: effects of exposure on zonation patterns. Ecology 64: 331–344.

    Article  Google Scholar 

  • Keddy, P. A., 1985. Wave disturbance on lakeshores and the within-lake distribution of Ontario’s Atlantic coastal plain flora. Can. J. Bot. 63: 656–660.

    Google Scholar 

  • Levins, R. & Lewontin, R., 1982. Dialectics and reductionism in ecology. In: E. Saarinen (ed.), Conceptual issues in ecology, pp. 107–138. Reidel, Dordrecht.

    Google Scholar 

  • Lubchenco, J., 1980. Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology 61: 333–344.

    Article  Google Scholar 

  • Mason, H. L., 1947. Evolution of certain floristic associations in western North America. Ecol. Monogr. 17: 201–210.

    Google Scholar 

  • McCullogh, P. & Nelder, J. A., 1983. Generalized linear models. Chapman and Hall, London.

    Google Scholar 

  • McIntosh, R. P., 1967. The continuum concept of vegetation. Bot. Rev. 33: 130–187.

    Google Scholar 

  • McIntosh, R. P., 1975. H. A. Gleason-`individualistic ecologist’ 1882–1975. His contributions to ecological theory. Bull. Torry Bot. Club 102: 253–273.

    Article  Google Scholar 

  • Paine, R. T., 1984. Ecological determinism in the competition for space. Ecology 65: 1339–1348.

    Article  Google Scholar 

  • Pielou, E. C. & Routledge, R. D., 1976. Salt marsh vegetation: latitudinal variation in the zonation patterns. Oecologia 24: 311–321.

    Article  Google Scholar 

  • Pielou, E. C., 1975. Ecological diversity. Wiley, New York. Pielou, E. C., 1977. Mathematical ecology. Wiley, New York.

    Google Scholar 

  • Schoener, T. W., 1983. Field experiments on interspecific com-petition. Am. Nat. 122: 240–285.

    Article  Google Scholar 

  • Sharitz, R. R. & McCormick, J. F., 1972. Population dynamics of two competing annual plant species. Ecology 54: 723–740.

    Article  Google Scholar 

  • Silander, J. A. & Antonovics, J., 1982. Analysis of interspecific interactions in a coastal plant community — a perturbation approach. Nature 298: 557–610.

    Article  Google Scholar 

  • Simberloff, D., 1982a. A succession of paradigms in ecology: essentialism to materialism and probabilism. In: E. Saarinen (ed.), Conceptual issues in ecology, pp. 139–153. Reidel, Dordrecht.

    Google Scholar 

  • Simberloff, D., 1982b. Reply. In: E. Saarinen (ed.), Conceptual issues in ecology, pp. 139–153. Reidel, Dordrecht.

    Google Scholar 

  • Snow, A. A. & Vince, S. W., 1984. Plant zonation in an Alaskan salt marsh I. Distribution, abundance and environmental factors. J. Ecol. 72: 651–667.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1981. Biometry, 2nd ed. Freeman, San Francisco.

    Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Adv. Ecol. Res. 12: 37–125.

    Google Scholar 

  • Turkington, R. & Aarssen, L. W., 1984. Local-scale differentiation as a result of competitive interactions. In: R. Dirzo & J. Sarukhan (eds), Perspectives on plant population biology, pp. 107–127. Sinauer, Sunderland, MA.

    Google Scholar 

  • Underwood, A. J., 1978. The detection of non-random patterns of distribution of species along an environmental gradient. Oecologia 36: 317–326.

    Article  Google Scholar 

  • Vince, S. W. & Snow, A. A., 1984. Plant zonation in an Alaskan salt marsh II. An experimental study of the role of edaphic conditions. J. Ecol. 72: 669–684.

    Google Scholar 

  • Whittaker, R. H., 1951. A criticism of the plant association and climatic climax concepts. Northwest Sci. 25: 17–31.

    Google Scholar 

  • Whittaker, R. H., 1956. Vegetation of the Great Smoky Moun-tains. Ecol. Monogr. 26: 1–80.

    Article  Google Scholar 

  • Whittaker, R. H., 1962. Classification of natural communities. Bot. Rev. 28: 1–160.

    Article  Google Scholar 

  • Whittaker, R. H., 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R. H., 1975. Communities and ecosystems, 2nd ed. Macmillan, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Shipley, B., Keddy, P.A. (1987). The individualistic and community-unit concepts as falsifiable hypotheses. In: Prentice, I.C., van der Maarel, E. (eds) Theory and models in vegetation science. Advances in vegetation science, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4061-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4061-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8303-4

  • Online ISBN: 978-94-009-4061-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics