Advertisement

Molecular markers for marine algal polysaccharides

  • Valerie Vreeland
  • Earl Zablackis
  • Bogdan Doboszewski
  • Watson M. Laetsch
Part of the Developments in Hydrobiology book series (DIHY, volume 41)

Abstract

Alginate, carrageenan and agar are marine algal polysaccharides with several common features. They all contain linear substructures which enable them to form gels. All three types of polymers vary within and between samples in subunit composition and arrangement, and in molecular weight. That the subunit organization in these complex algal polymers is neither completely regular nor completely random is becoming increasingly clear (Larsen, 1981; Greer et al., 1984). The relationship between carbohydrate primary structure, polymer conformation and biochemical properties of marine algal carbohydrates is gaining increasing attention as new experimental approaches are being developed. Recent studies have involved combinations of chemical or enzymatic fragmentation; size, ionic or electrophoretic separations; and analysis of polymer properties or interactions by nuclear magnetic resonance spectroscopy, infrared spectroscopy, optical rotatory dispersion, circular dichroism, light scattering, calorimetry and other modern techniques (e.g., Dea et al., 1972; Larsen, 1981; Smidsrod & Grasdalen, 1984; Lahaye et al., 1985).

Key words

seaweed agar alginate carrageenan carbohydrate hybridization probe fucoidan monoclonal antibodies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dea, I. C. M., A. A. McKinnon & D. A. Rees, 1972. Tertiary and quaternary structure in aqueous polysaccharide systems which model cell wall cohesion: reversible changes in conformation and association of agarose, carrageenan and galac- tomannans. J. mol. Biol. 68: 153–172.PubMedCrossRefGoogle Scholar
  2. Grant, G. T., E. R. Morris, D. A. Rees, P. J. C. Smith & D. Thom, 1973. Biological interactions between polysaccharides and divalent cations: The egg–box model. FEBS Lett. 32: 195–198.CrossRefGoogle Scholar
  3. Greer, C. W., I. Shomer, M. E. Goldstein & W. Yaphe, 1984. Analysis of carrageenan from Hypnea musciformis by using K– and t–carrageenases and 13C–N.M.R. spectroscopy. Carbo– hyd. Res. 129: 189–196.CrossRefGoogle Scholar
  4. Haug, A. & O. Smidsrod, 1970. Selectivity of some anionic polymers for divalent metal ions. Acta Chem. Scand. 24: 843–854.CrossRefGoogle Scholar
  5. Hosford, S. P. C. &E. L. McCandless, 1975. Immunochemistry of carrageenans from gametophytes and sporophytes of certain red algae. Can. J. Bot. 53: 2835–2841.CrossRefGoogle Scholar
  6. Hogsett, W. E. & R. W. Quatrano, 1978. Sulfation of fucoidan in Fucus embryos. III. Required for localization in the rhi– zoid wall. J. Cell Biol. 78: 866–873.PubMedCrossRefGoogle Scholar
  7. Knudson, C. B. & B. P. Toole, 1985. Fluorescent morphological probe for hyaluronate. J. Cell Biol. 100: 1753 – 1758.PubMedCrossRefGoogle Scholar
  8. Lahaye, M., W. Yaphe & C. Rochas, 1985. 13C-N.m.r.-spectral analysis of sulfated and desulfated polysaccharides of the agar type. Carbohydr. Res. 143: 240–245.CrossRefGoogle Scholar
  9. Larsen, B., 1981. Biosynthesis of alginate. Proc. int. Seaweed Symp. 10: 7–34.Google Scholar
  10. Larsen, B., V. Vreeland & W. M. Laetsch, 1985. Assay– dependent specificity of a monoclonal antibody with alginate. Carbohydr. Res. 143: 221–227.CrossRefGoogle Scholar
  11. McCandless, E. L. & M. R. Gretz, 1984. Biochemical and immunochemical analysis of carrageenans of the Gigartinaceae and Phyllophoraceae. Proc. int. Seaweed Symp. 11: 175–178.Google Scholar
  12. Morris, E. R., D. A.Rees & G. Robinson, 1980. Cation–specific aggregation of carrageenan helices: domain model of polymer gel structure. J. mol. Biol. 138: 349–362.PubMedCrossRefGoogle Scholar
  13. Smidsrod, O. & H. Grasdalen, 1982. Some physical properties of carrageenan in solution and gel state. Carbohydr. Polym. 2: 270–272.CrossRefGoogle Scholar
  14. Smidsrod, O. & H. Grasdalen, 1984. Polyelectrolytes from seaweeds. Proc. int. Seaweed Symp. 11: 18–28.Google Scholar
  15. Stone, B. A., 1984. Noncellulosic β-glucans in cell walls. In W. M. Dugger & S. Bartnicki-Garcia (eds), Structure, Function and Biosynthesis of Plant Cell Walls. Proc. ann. Symp. Bot. 7, Amer. Soc. Plant Physiol., Waverly Press, Baltimore: 52 – 74.Google Scholar
  16. Vreeland, V., 1981. Alginates and sulfated fucans in brown algal cell walls. Proc. int. Seaweed Symp. 8: 637–643.Google Scholar
  17. Vreeland, V., W. M. Laetsch, 1981. Immunoelectrophoretic study of changes in cell wall antigens during Fucus embryo development. Proc. int. Seaweed Symp. 10: 531–536.Google Scholar
  18. Vreeland, V. & W. M. Laetsch, 1985. Monoclonal antibodies as molecular probes to seaweed carbohydrates. In A. J. Sinsky, R. R. Colwell & E. R. Pariser (eds), Biotechnology of Marine Algal Polysaccharides. Hemisphere, Washington, DC: 399 – 412.Google Scholar
  19. Vreeland, V., M. Slomich & W. M. Laetsch, 1984. Monoclonal antibodies as molecular probes for cell wall antigens of the brown alga, Fucus. Planta (Berl.) 162: 506 – 517.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1987

Authors and Affiliations

  • Valerie Vreeland
    • 1
  • Earl Zablackis
    • 1
  • Bogdan Doboszewski
    • 1
  • Watson M. Laetsch
    • 1
  1. 1.Department of botanyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations