Spirulina, real aid to development

  • Ripley D. Fox
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 41)


World population in 1960 was about 3 x 109; today it is 5 x 109; and in the year 2000 it is expected to be about 7 x 109. Yes, there is need for protein, vitamins, and minerals — more than can be provided by conventional means. As farmland will be at an ever-increasing premium, non-conventional food sources such as bacteria and yeasts which require organic substrates can be excluded. Photosynthetic aquatic biomass is the only practical resource awaiting general exploitation. Microalgae, with their rapid growth rate, are the most efficient producers of such biomass. And Spirulina (Arthrospira), by virtue of its high available protein and vitamin content (Clément et al., 1967), relative ease of exploitation (Becker & Venkataraman, 1982; Umesh & Seshagiri, 1984), and long history of human consumption (Furst, 1978), is the favored microalga.

Key words

Spirulina cultivation malnutrition recycling international development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, E. W. & L. V. Venkataraman, 1982. Biotechnology and Exploitation of Algae, The Indian Approach. GTZ Esch- born.Google Scholar
  2. Busson, F., 1971. Spirulina platensis (Gom.) Geitler et Spirulina geitleri J. de Toni, cyanophycées alimentaires. Service de Santé, Parc du Pharo, 13 Marseille, France: 138-139.Google Scholar
  3. China Daily, 18 Sept., 1985. Alternative Energy Course. (Chengdu ), Beijing.Google Scholar
  4. Clément, G., C. Giddey & R. Menzi, 1967. Amino acid composition and nutritive value of the alga Spirulina maxima. J. Sci. Fd Agric. 18: 497–501.CrossRefGoogle Scholar
  5. Fox, R. D., 1984. Algoculture. Laboratoire de La Roquette, St. Bauzille de Putois, France.Google Scholar
  6. Furst, P. T., 1978. Spirulina, a nutritious alga, once a staple of Aztec diets, could feed many of the world’s hungry people. Human Nature, March 1978: 60–65.Google Scholar
  7. Gotaas, H. B., 1956. Composting - Sanitary Disposal and Reclamation of Organic Wastes. W.H.O. Monograph Series No. 31, Geneva.Google Scholar
  8. Huisman, L. & W. E. Wood, 1974. Slow Sand Filtration. W.H.O., Geneva.Google Scholar
  9. Kemster, P. L., W. H. J. Hattingh & H. R. Van Vliet, 1980. Summarized water quality criteria. Tech. Rep. 108, Dept. Water Affairs, Forestry and Environmental Conservation, Pretoria, Rep. of South Africa.Google Scholar
  10. Lyon, S. R. & B. V. Elkins, 1984. Tertiary Wastewater Treatment Using the Blue Green Alga, Spirulina. San Diego Region Water Reclamation Agency, Santee, CA.Google Scholar
  11. Murphy, T. P., D. R. S. Lean & C. Nalewajko, 1976. Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science 192: 900 - 902.PubMedCrossRefGoogle Scholar
  12. Sykes, G., 1965. Disinfection & Sterilization - Theory and Practice. E. & F. Spon, London.Google Scholar
  13. Umesh, B. V. & S. Seshagiri, 1984. Spirulina as Feed and Food. Monogr. Ser. Eng. Photosynthetic Systems 17. Shri A.M.M. Murugappa Chettiar Research Centre, Tharamani, Madras, India.Google Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1987

Authors and Affiliations

  • Ripley D. Fox
    • 1
  1. 1.Laboratoire de la RoquetteSaint Bauzille de PutoisFrance

Personalised recommendations