Skip to main content

Soil fertility and the composition of semi-natural grassland

  • Chapter
Disturbance in Grasslands

Part of the book series: Geobotany ((GEOB,volume 10))

Abstract

It is commonly recognized that soil nutritional factors have a profound effect on the botanical composition of grasslands, especially in acidic, calcareous, and saline habitats. As a result of frequent application of fertilizers, semi-natural grasslands have gradually been transformed into intensively used cultivated grasslands; this has led to marked changes in their botanical composition. The numerous slow-growing species typical of low fertility sites, are gradually replaced by a few species with rapid growth and a high nutrient demand, so there is a decrease in species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Farraj, M.M., Giller, K.E. & Wheeler B.D. (1984). Phytometric estimation of fertility of waterlogged rich-fen peats using Epilobium hirsutum L. Plant and Soil 81: 283–289.

    Article  CAS  Google Scholar 

  • Allen, S.E. (ed.) (1974). Chemical analysis of ecological materials. Blackwell, Oxford.

    Google Scholar 

  • Armstrong, W. (1964). Oxygen diffusion from the roots of some British bog species. Nature 204: 801–802.

    Article  CAS  Google Scholar 

  • Armstrong, W. & Boatman, D.J. (1967). Some field observations relating to the growth of bog plants to conditions of soil aeration. J. Ecol. 55: 101–110.

    Article  Google Scholar 

  • Atkinson, D. (1973). Observations on the phosphorus nutrition of two sand dune communities at Ross Links. J. Ecol. 61: 117–133.

    Article  CAS  Google Scholar 

  • Bakker, J.P., Dekker, M. & de Vries, Y. (1980). The effect of different management practices on a grassland community and the resulting fate of seedlings. Acta Bot. Neerl. 29: 469–482.

    Google Scholar 

  • Bakker, J.P. & De Vries, Y. de (1985). The results of different cutting regimes in grassland taken out of the agricultural system. In: K.H. Schreiber (Ed.), Suksession auf Grünlandbrachen, pp 51–57. Ferdinand Schöningh, Paderborn.

    Google Scholar 

  • Ball, D.F. & Williams, W.M. (1968). Variability of soil chemical properties in two uncultivated brown earths. J. Soil Sci. 19: 379–391.

    Article  CAS  Google Scholar 

  • Barber, S.A. (1984). Soil nutrient bioavailability. A mechanical approach. Wiley & Sons, New York.

    Google Scholar 

  • Barber, D.A., Sanderson, J. & Scott-Russel, R. (1968). Influence of micro organisms on the distribution in roots of phosphate labelled with phosphorus-32. Nature 217: 644.

    Article  PubMed  CAS  Google Scholar 

  • Bates, T.E. (1971). Factors affecting critical nutrient concentrations in plants and their evaluation: a review. Soil Science 112: 116–130.

    Article  CAS  Google Scholar 

  • Beckett, P.H.T. & Webster, R. (1971). Soil variability: a review. Soils and Fertilizers 34: 1–15.

    Google Scholar 

  • Beddows, A.R. (1961). Biological flora of the British isles. Holcus lanatus. J. Ecol. 49: 421–430.

    Article  Google Scholar 

  • Booy, A.H. (1986). IJzeroer in Drenthe. Ontstaan, voorkomen en winning. Historisch Jaarboek Drenthe 103: 66–88. Van Gorcum, Assen.

    Google Scholar 

  • Bradshaw, A.D., Chadwick, M.J., Jowett, D. & Snaydon, R.W. (1964). Experimental investigations into the mineral nutrition of several grass species. IV. Nitrogen level. J. Ecol. 52: 665–676.

    Article  Google Scholar 

  • Brown, J.C. (1978). Mechanism of iron uptake by plants. Plant, Cell & Environment 1: 249–257.

    Article  Google Scholar 

  • Chapman, H.D. (1966). Diagnostic criteria for plants and soils, pp 730–737. University of California (Division of Agricultural Science), Riverside.

    Google Scholar 

  • Cornforth, I.S. & Walmsley, D. (1971). Methods of measuring available nutrients in West Indian soils. I. Nitrogen. Plant and Soil 35:389–399.

    CAS  Google Scholar 

  • Davies, M.S. & Snaydon, R.W. (1974). Physiological differences among populations ofAnthoxanthum odoratum L. collected from the Park Grass Experiment Rothamsted. III. Response to phosphate. J. Appl. Ecol. 11: 699–707.

    Article  Google Scholar 

  • Davy, A.J. & Taylor, K. (1974). Seasonal patterns of nitrogen availability in contrasting soils in the Chiltern Hills. J. Ecol. 62: 793–807.

    Article  CAS  Google Scholar 

  • De Bakker, H. (1979). Major soils and soil regions in the Netherlands. Junk, The Hague.

    Google Scholar 

  • De Both, M.T.J., De Muinck Keizer, M., Wouda, A., Bakker, B. & Drenth, W. (1983). Seizoensfluctuaties in de bodem. Internal report, Dept. of Physical Geography, State University of Groningen (mimeo). 544 pp.

    Google Scholar 

  • Deist, J., Marais, P.G., Harry, R.B.A. & Heyns, C.F.G. (1971). Relative availability of rock phosphate to different plant species. Agrochemophysica 3: 35–40.

    Google Scholar 

  • Denudt, G. & Lambert, J. (1976). Étude minerale de quelques plantes de prairies humides. In: J.M. Géhu (Ed.), La végétation des prairies inondables. Colloques phytosociologues 5: 353–357. Cramer, Vaduz.

    Google Scholar 

  • Dickinson, N.M. (1984). Seasonal dynamics and compartmentation of nutrients in a grassland meadow in lowland England. J. Appl. Ecol. 21: 695–701.

    Article  CAS  Google Scholar 

  • Dirven, J.G.P. (1984). De minerale samenstelling van afzon-derlijke graslandplanten. Report 81, Dept. of Field Crops and Grassland Science, Agricultural University, Wageningen. 14 pp.

    Google Scholar 

  • Dormaar, J.F. (1972). Seasonal pattern of soil organic phosphorus. Can. J. Soil Sci. 52: 107–112.

    Article  CAS  Google Scholar 

  • Ellenberg, H. (1956). Ãœber die Beziehungen zwischen Pflanzengesellschaft, Standort, Bodenprofil und Bodentyp. Bericht über das internationale Symposium Pflanzensoziologie/Bodenkunde. Stolzenau/Weser. 4 pp.

    Google Scholar 

  • Ellenberg, H. (1979). Indicator values of vascular plants in Central Europe. Scr. Geobot. 9. 122 pp.

    Google Scholar 

  • Ernst, W.H.O. (1978). Chemical soil factors determining plant growth. In: A.H.J. Freijsen & J.W. Woldendorp (Eds.), Structure and functioning of plant populations, pp 155–187. North Holland Publ. Comp., Amsterdam.

    Google Scholar 

  • Ernst, W.H.O. & Nelissen, H.J.M. (1979). Growth and mineral nutrition of plant species from clearings on different horizons of an Iron-Humus profile. Oecologia (Berlin) 41: 175–182.

    Article  Google Scholar 

  • Fitter, A.H. (1982). Influence of soil heterogeneity on the coexistence of grassland species. J. Ecol. 70: 139–148.

    Article  Google Scholar 

  • Fitter, A.H. (1986). Spatial and temporal patterns of root activity in a species-rich alluvial grassland. Oecologia (Berlin) 69: 594–599.

    Article  Google Scholar 

  • Foy, C.D., Chaney, R.L. & White, M.C. (1978). The physiology of metal toxicity in plants. Ann. Rev. of Plant Phys. 29: 511–566.

    Article  CAS  Google Scholar 

  • Frankland, J.C., Ovington, J.D. & Macrae, C. (1963). Spatial and seasonal variations in soil, litter and ground vegetation in some lake district woodlands. J. Ecol. 51: 99–112.

    Google Scholar 

  • Fresco, L.F.M., Hermans, E. & van der Lans, W. (1984). Soil phosphorus as a factor controlling vegetation composition in moist hay fields: a statistical evaluation of some methods for the determination of available phosphate. Plant and Soil 78: 259–269.

    Article  CAS  Google Scholar 

  • Gambrell, R.P. & Patrick, W.H. (1978). Chemical and microbiological properties of anaerobic soils and sediments. In: D.H. Hook & R.M.M. Crawford (Eds.), Plant life in anaerobic environments, pp 375–423. Ann Arbor Science, Ann Arbor.

    Google Scholar 

  • Gigon, A. & Rorison, I.H. (1972). The response of some ecological distinct plant species to nitrate and to ammonium-nitrogen. J. Ecol. 60: 93–102.

    Article  CAS  Google Scholar 

  • Godo, G.H. & Reisenauer, H.M. (1980). Plant effects on soil manganese availability. Soil Sci. Soc. Am. Proc. 44: 993–995.

    Article  CAS  Google Scholar 

  • Green, M.S. & Etherington, J.R. (1977). Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance. J. Exp. Bot. 28: 678–690.

    Article  CAS  Google Scholar 

  • Grime, J.P. (1979). Plant species and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Grime, J.P. & Hodgson, J.G. (1969). An investigation of the ecological significance of lime-chlorosis by means of large-scale comparative experiments. In: I.H. Rorison (Ed.), Ecological aspects of the mineral nutrition of plants, pp 67–99. Blackwell, Oxford.

    Google Scholar 

  • Grime, J.P. & Hunt, R. (1975). Relative growth rate: its range and adaptive significance in a local flora. J. Ecol. 63: 393–422.

    Article  Google Scholar 

  • Grootjans, A.P. (1980). Distribution of plant communities along rivulets in relation to management and hydrology. In: O. Wilmanns & R. Tüxen (Eds.), Epharmonie, pp 143–170. Cramer, Vaduz.

    Google Scholar 

  • Grootjans, A.P. & Ten Klooster, W.Ph. (1980). Changes of ground water regime in wet meadows. Acta Bot. Neerl. 29: 541–554.

    Google Scholar 

  • Gupta, P.L. & Rorison, I.H. (1975). Seasonal differences in the availability of nutrients down a podzolic profile. J. Ecol. 63: 521–534.

    Article  CAS  Google Scholar 

  • Harrison, A.F. & Helliwell, D.R. (1979). A bioassay for comparing phosphorus availability in soils. J. Ecol. 16: 497–505.

    CAS  Google Scholar 

  • Holst, G. (1974). Ãœber die Stickstoffdisposition in der Nährstoff aufnahme der Pflanzen. Angew. Bot. 48: 77–95.

    CAS  Google Scholar 

  • Hoogveld, J.G.E. (1986). Een testplantexperiment in het kader van onderzoek naar verschraling. Internal report, Dept. of Plant Ecology, State University of Groningen (mimeo). 57 pp.

    Google Scholar 

  • Hook, D.D. & Scholiens, J.R. (1978). Adaptations and flood tolerance of tree species. In: D.D. Hook & R.M.M. Crawford (Eds.), Plant life in anaerobic environments, pp 299–331. Ann Arbor Science, Ann Arbor.

    Google Scholar 

  • Islam, A. & Islam, W. (1973). Chemistry of submerged soils and growth and yield of rice. I. Benefits from submergence. Plant and Soil 39: 555–565.

    Article  CAS  Google Scholar 

  • Jansen, H., Pathuis, W., Wemmenhove, A. & Olde Loohuis, J. (1981). De invloed van maaien en afvoeren op de bodemvruchtbaarheid. Internal report, Dept. of Plant Ecology, State University of Groningen (mimeo). 33 pp.

    Google Scholar 

  • Janssen, B.H. (1974). A double pot technique for rapid soil testing. Trop. Agric. (Trinidad) 51: 161–166.

    CAS  Google Scholar 

  • Jefferies, R.L. & Willis, A.J. (1964). Studies on the calcicole-calcifuge habitat. II. The influence of calcium on the growth and establishment of four species in soil and sand cultures. J. Ecol. 52: 691–707.

    Article  Google Scholar 

  • Jones, R. (1972). Comparative studies of plant growth and distribution in relation to waterlogging. V. The uptake of iron and manganese by dune and slack plants. J. Ecol. 60: 131–140.

    Article  CAS  Google Scholar 

  • Jones, H.E. & Etherington, J.R. (1970), Comparative studies of plant growth and distribution in relation to waterlogging. I. The survival of Erica cinerea L. and E. tetralix L. and its apparent relationship to iron and manganese uptake in waterlogged soil. J. Ecol. 58: 487–496.

    Article  Google Scholar 

  • Klapp, E. (1965). Grünlandvegetation und Standort. Parey, Berlin.

    Google Scholar 

  • Kruijne, A.A., De Vries, D.M. & Mooi, H. (1967). Bijdrage tot de oecologie van de Nederlandse graslandplanten. Versl. landbouwk. Onderz. 696: 1–65. Wageningen.

    Google Scholar 

  • Martin, M.H. (1968). Conditions affecting the distribution of Mercurialis perennis in certain Cambridgeshire woodlands. J. Ecol. 56: 777–793.

    Article  Google Scholar 

  • Miller, M.H., Mamaril, C.P. & Blair, G.J. (1970). Ammonium effects on phosphorus absorption through PH changes and phosphorus precipitated at the soil-root interface. Agron. J. 62: 524–527.

    Article  CAS  Google Scholar 

  • Moser, M. & Haselwandter, K. (1983). Ecophysiology of my-corrhizal symbiosis. In: O.L. Lange, P.S. Nobel, C.B. Osmond & H. Ziegler (Eds.), Responses to the chemical and biological environment. Part C., pp 391–421. Encycl. Plant Physiology N.S. vol. 12. Springer, Berlin.

    Google Scholar 

  • Muller, A. (1979). Deficiency symptoms in cacao seedlings observed in pot experiments with the Bouma-Janssen method. Neth. J. agric. Sci. 27: 211–220.

    CAS  Google Scholar 

  • Olde Loohuis, J. & Wemmenhove, A. (1984). De invloed van maaien en afvoeren op de bodemvruchtbaarheid. Internal report, Dept. of Plant Ecology, State University of Groningen (mimeo). 91 pp.

    Google Scholar 

  • Olsen, R.A., Clark, R.B. & Bennett, J.H. (1981). The enhancement of soil fertility by plant roots. Am. Sci. 69: 378–384.

    CAS  Google Scholar 

  • Pegtel, D.M. (1976). On the ecology of two varieties of Sonchus arvensis L. Ph. D. Thesis, State University of Groningen. 148 pp.

    Google Scholar 

  • Pegtel, D.M. (1983). Ecological aspects of a nutrient-deficient wet grassland (Cirsio-Molinietum). Verh. Ges. Ökol. 10: 217–228.

    Google Scholar 

  • Pigott, C.D. & Taylor, K. (1964). The distribution of some woodland herbs in relation to the supply of nitrogen and phosphorus in the soil. J. Ecol. 52 (suppl.): 175–185.

    Google Scholar 

  • Proctor, J. (1971). The plant ecology of serpentine. II. Plant response to serpentine soils. J. Ecol. 59: 397–410.

    Article  Google Scholar 

  • Riley, D. & Barber, S.A. (1971). Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced changes at the root-soil interface. Soil Sci. Soc. Am. Proc. 35: 301–306.

    Article  CAS  Google Scholar 

  • Rorison, I.H. (1967). A seedling bioassay of some soils in the Sheffield area. J. Ecol. 55: 725–752.

    Article  Google Scholar 

  • Rorison, I.H. (1968). The response to phosphorus of some ecologically distinct plant species. New Phytol. 67: 913–923.

    Article  CAS  Google Scholar 

  • Rorison, I.H. (1969). Ecological inferences from laboratory experiments on mineral nutrition. In: I.H. Rorison (Ed.), Ecological aspects of the mineral nutrition of plants, pp 155–175. Blackwell, Oxford.

    Google Scholar 

  • Rorison, I.H. (1985). Nitrogen source and the tolerance of Deschampsia flexuosa, Holcus lanatus andBromus erectus to aluminium during seedling growth. J. Ecol. 73: 83–90.

    Article  CAS  Google Scholar 

  • Rosnitschek-Schimmel, I. (1982). Effect of ammonium and nitrate supply on dry matter production and nitrogen distribution in Urtica dioica. Z. Pflanzenphysiol. 108: 329–341.

    CAS  Google Scholar 

  • Rouatt, J.W., Katznelson, H. & Payne, T.M.B. (1960). Statistical evaluation of the rhizosphere effect. Soil Sci. Soc. Am. Proc. 24: 271–273.

    Google Scholar 

  • Rovira, A.D. & Davey, C.B. (1974). Biology of the rhizosphere. In: E.W. Carson (Ed.), The plant root and its environment, pp 153–204. Univ. Press Virginia, Charlottesville.

    Google Scholar 

  • Safford, L.O. (1982). Correlation of greenhouse bioassay with field response to fertilizer by paper birch. Plant and Soil 64: 167–176.

    Article  Google Scholar 

  • Saunders, W.M.H. & Metson, A.J. (1971). Seasonal variation of phosphorus in soil and pasture. N.Z. J. agric. Res. 14: 307–328.

    CAS  Google Scholar 

  • Smith, F.W. & Cook, R.L. (1953). A study of the relationship between chemically available phosphorus and plant growth response on several Michigan soils. Soil Sci. Soc. Am. Proc. 17: 26–30.

    CAS  Google Scholar 

  • Snaydon, R.W. & Howe, C.D. (1986). Root and shoot competition between established ryegrass and invading grass seedlings. J. Appl. Ecol. 23: 667–674.

    Article  Google Scholar 

  • Strigel, A. (1912). Mineralstoffaufnahme verschiedener Pflanzenarten aus ungedüngtem Boden. Ãœber den Einflusz der botanischen Natur, der Herkunft und Erntezeit auf die chemische Zusammensetzung von Wiesenheu. Landw. Jb. 43: 349–371.

    Google Scholar 

  • Taylor, A.A., De-Felice, J. & Havill, D.C. (1982). Seasonal variation in nitrogen availability and utilization in an acidic and calcareous soil. New Phytol. 92:141–152.

    Article  CAS  Google Scholar 

  • Van Heuveln, B. (1980). Vegetation and soil in a Drenthian brook valley (the Netherlands). Acta Bot. Neerl. 29: 555–564.

    Google Scholar 

  • Van Ray, B. & Van Diest, A. (1979). Utilization of phosphate from different sources by six plant species. Plant and Soil 51: 577–589.

    Article  Google Scholar 

  • Vaughn, C.E., Center, D.M. & Jones, M.B. (1986). Seasonal fluctuations in nutrient availability in some northern California annual range soils. Soil Science 141: 43–51.

    Article  CAS  Google Scholar 

  • Walmsley, D. & Cornforth, I.S. (1973). Methods of measuring available nutrients in West-Indian soils II. Phosphorus. Plant and Soil 39:93–101.

    Article  CAS  Google Scholar 

  • Wells, M. & Saunders, W.M.H. (1960). Soil studies using sweet vernal to assess element availability. IV. Phosphorus. N.Z.J, agric. Res. 3: 279–299.

    CAS  Google Scholar 

  • Wild, A., Skarlou, V., Clements C.R. & Snaydon, R.W. (1974). Comparison of potassium uptake of four plant species grown in sand and in flowing solution culture. J. Appl. Ecol. 11:801–812.

    Article  CAS  Google Scholar 

  • Williams, E.C. & Knight, A.H. (1963). Evaluation of soil phosphate status by pot experiments, convential extraction methods, and labile phosphate values estimated with the aid of phosphorus-32. J. Sci. Food Agr. 14: 555–563.

    Article  Google Scholar 

  • Williams, C.H. & Simpson, J.R. (1965). Some effects of cultivation and waterlogging on the availability of phosphorus in pasture soils. Austr. J. agric. Res. 16: 413–427.

    Article  CAS  Google Scholar 

  • Wöhlbier, W. & Kirchgessner, M. (1957), Der Gehalt von einzelnen Gräser, Leguminosen und Kräutern an Mengen-und Spurenelementen. Landwirtsch. Forsch. 10: 240–251.

    Google Scholar 

  • Woolhouse, H.W. (1969). Differences in the properties of the acid phophatases of plant roots and their significance in the evolution of edaphic ecotypes. In: I.H. Rorison (Ed.), Ecologicial aspects of the mineral nutrition of plants, pp 357–380. Blackwell, Oxford/Edinburgh.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Pegtel, D.M. (1987). Soil fertility and the composition of semi-natural grassland. In: Van Andel, J., Bakker, J.P., Snaydon, R.W. (eds) Disturbance in Grasslands. Geobotany, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4055-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4055-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8300-3

  • Online ISBN: 978-94-009-4055-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics