Tennahedrite Thermochemistry and Metal Zoning

  • Richard O. Sack
  • Denton S. Ebel
  • Michael J. O’Leary
Part of the NATO ASI Series book series (ASIC, volume 218)


Provisional activity-composition relations are developed for tennahedrites approximating the chemical formula (Ag,Cu)10(Fe,Zn)2−(Sb,As)4S13. These relations are based on a “Temkin” type model for the configurational entropy combined with an expression for the vibrational Gibbs energy based on a second-degree Taylor series expansion in terms of the composition variables X2≡Zn/(Zn+Fe), X3≡As/(As+Sb), and X4≡Ag/(Ag+Cu) and an ordering variable s≡\( {\rm{(X}}_{{\rm{Ag}}}^{{\rm{TRG}}}\,{\rm{ - }}\,{\rm{3/2}}\,\,{\rm{X}}_{{\rm{Ag}}}^{{\rm{TET}}}{\rm{)}} \) which describes the distribution of Ag and Cu between trigonal-planar and tetrahedral metal sites. Calibration of the parameters in the resulting expression for the Gibbs energy is based on considerations of the Ag-Cu and Fe-Zn exchange reactions between tennahedrites and other crystalline phases. This calibration gives an expression for the distribution of Ag and Cu between trigonal-planar and tetrahedral metal sites that predicts changes from trigonal-planar to tetrahedral site preference for Ag with increasing Ag/(Ag+Cu) in accord with the local maxima in cell edge observed in natural (Ag,Cu)10(Fe,Zn)2Sb4S13 tennahedrites. The resulting activity-composition relations predict extensive miscibility gaps for (Ag,Cu)10Fe2(Sb,As)4S13 and (Ag,Cu)10Zn2(Sb,As)4S13 tennahedrites consistent with the chemical variations observed in nature. They support the hypothesis that crystal energetics and As-Sb fractionation between tennahedrite and hydrothermal fluids determine the distribution of silver in many zoned Pb-Zn-Cu-Ag sulfide ore deposits.


Gibbs Energy Hydrothermal Fluid Economic Geology Exchange Potential Volcanogenic Massive Sulfide Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araya, R.A., Bowles, J.F.W., and Simpson, P.R. (1977) ‘Relationships between composition and reflectance in the tennantite-tetrahedrite series of the El Teniente ore deposit, Chile’. Neues Jahrbuch für Mineralogie Monatshefte, 467–482.Google Scholar
  2. Atanasov, V.A. (1975) ‘Argentian mercurian tetrahedrite, a new variety, from the Chiprovtsi ore deposit, western Stara-Planina Mountains, Bulgaria’. Mineralogical Magazine, 40, 233–237.CrossRefGoogle Scholar
  3. Augsten, B.E.K., Thorpe, R.I., Harris, D.C., and Fedikow, M.A.F. (1986) ‘Ore mineralogy of the Agassiz (MacLellan) gold deposit in the Lynn lake region, Manitoba‘. Canadian Mineralogist, 24, 369–377.Google Scholar
  4. Barton, P.B., Jr. and Toulmin, P., III (1966) ‘Phase relations involving sphalerite in the Fe-Zn-S system’. Economic Geology, 61, 815–849.CrossRefGoogle Scholar
  5. Basu, K., Bortnykov, N., Moorherjee, A., Mozgova, N., and Tsepin, A.I. (1981) ‘Rare minerals from Rajpura-Dariba, Rajasthan, India. III. Plumbian tetrahedrite’. Neues Jahrbuch für Mineralogie Abhandlungen, 141, 280–289.Google Scholar
  6. Birch, W.D. (1981) ‘Silver su1fosalts from the Meerschaum mine, Mt. Wills, Victoria, Australia’. Mineralogical Magazine, 44, 73–78.CrossRefGoogle Scholar
  7. Charlat, M. and Levy, C. (1974) ‘Substitutions multiples dans la série tennantite-tétrahedrite’. Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 97, 241–250.Google Scholar
  8. Charlat, M. and Levy, C. (1975) ‘Influence principales sur le parametre cristallin dans la serie tennantite-tétrahédrite’. Bulletin de la Société Francaise de Minéralogie et de Cristallographie, 98, 152–158.Google Scholar
  9. Chen, T.T., Dutrizac, J.E., Owens, D.R., and LaFlamme, J.H.G. (1980) ‘Accelerated tarnishing of some chalcopyrite and tennantite specimens’. Canadian Mineralogist, 18, 173–180.Google Scholar
  10. Craig, J.R. and Barton, P.B., Jr. (1973) ‘Thermochemical approximations for sulfosalts’. Economic Geology, 68, 493–506.CrossRefGoogle Scholar
  11. Czamanske, G.K. and Hall, W.E. (1975) ‘The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silver-zinc deposit, southern California’. Economic Geology, 70, 1092–1110.CrossRefGoogle Scholar
  12. Eldridge, C.S., Barton, P.B., Jr., and Ohmoto, H. (1983) ‘Mineral textures and their bearing on formation of the Kuroko orebodies’. In H. Ohmoto and B.J. Skinner, Eds., The Kuroko and Related Volcanogenic Massive Sulfide Deposits: Economic Geology Monograph 5, 241–281.Google Scholar
  13. Goodell, P.C. and Petersen, U. (1974) ‘Julcani mining district, Peru: A study of metal ratios’. Economic Geology, 69, 347–361.CrossRefGoogle Scholar
  14. Hackbarth, C.J. (1984) Depositional modeling of tetrahedrite in the Coeur D’Alene district. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  15. Hackbarth, C.J. and Petersen, Ulrich (1984) ‘Systematic compositional variations in argentian tetrahedrite’. Economic Geology, 79, 448–460.CrossRefGoogle Scholar
  16. Hall, A.J. (1972) ‘Substitution of Cu by Zn, Fe, and Ag in synthetic tetrahedrite’. Bulletin de la Société francaise de Mineralogie et de Petrologie, 95, 583–594.Google Scholar
  17. Helgeson, H.C. (1969) ‘Thermodynamics of hydrothermal systems at elevated temperatures and pressures’. American Journal of Science, 227, 729–804.CrossRefGoogle Scholar
  18. Helgeson, H.C., Kirkham, D.H., and Flowers, G.C. (1981) ‘Theoretical prediction of the thermodynamic behavior of aqueous elecctrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 5 kb and 600°C’. American Journal of Science, 281, 1249–1516.CrossRefGoogle Scholar
  19. Indolev, L.N., Nevoysa, G.G., Bryzgalov, I.A. (1971) ‘New data on the composition of stibnite and the isomorphism of copper and silver’. Doklady Akademii Nauk SSSR, 199, 1146–1149.Google Scholar
  20. Ixer, R.A. and Stanley, C.J. (1980) ‘Mineralization at Le Pulec, Jersey, Channel Islands’. Mineralogical Magazine, 43, 1025–1029.CrossRefGoogle Scholar
  21. Ixer, R.A. and Stanley, C.J. (1980) ‘Mineralization at Le Pulec, Jersey, Channel Islands’ Mineralogical Magazine, 43, 1025–1029.CrossRefGoogle Scholar
  22. Jeanloz, R. and Johnson, M.L. (1984) ‘A note on the bonding, optical spectrum and composition of tetrahedrite’. Physics and Chemistry of Minerals, 11, 52–54.CrossRefGoogle Scholar
  23. Johnson, M.L. and Burnham, C.W. (1985) ‘Crystal structure refinement of an arsenic-bearing argentian tetrahedrite’. American Mineralogist, 70, 165–170.Google Scholar
  24. Johnson, M.L. and Jeanloz, R. (1983) ‘A brillouin-zone model for compositional variation in tetrahedrite’. American Mineralogist, 68, 220–226.Google Scholar
  25. Johnson, N.E., Craig, J.R., Rimstidt, J.D. (1986) ‘Compositional trends in tetrahedrite’. Canadian Mineralogist, 24, 385–397.Google Scholar
  26. Kalbskopf, R. (1972) ‘Strukturverfeinerung des freibergits’. Tschermaks Mineralogisch und Petrographische Mitteilungen, 18, 147–155.CrossRefGoogle Scholar
  27. Kane, F.J. and Petersen, U. (1986) ‘Tetrahedrite and bulk ore zoning in the Mimosa section of Julcani, Peru’. Economic Geology (in press).Google Scholar
  28. Kullerud, G., Donnay, G., and Donnay, J.D.H. (1969) ‘Omission solid solution in magnetite:Kenotetrahedral magnetite’. Zeitschrift für Kristallographie, 128, 1–17.CrossRefGoogle Scholar
  29. Lawson, A.W. (1947) ‘On simple binary solutions’. Journal of Chemical Physics, 15, 831–842.CrossRefGoogle Scholar
  30. Lichtner, P.C. (1985) ‘Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems’. Geochimica et Cosmochimica Acta, 49, 779–800.CrossRefGoogle Scholar
  31. Loucks, R.R. (1984) Zoning and ore genesis at Topia, Durango, Mexico. Unpublished Ph.D. Thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  32. Luce, F.D., Tuttle, C.L., and Skinner, B.J. (1977) ‘Studies of sulfosalts of copper. V. Phases and phase relations in the system Cu-Sb-As-S between 350° and 500°C’. Economic Geology, 72, 271–289.CrossRefGoogle Scholar
  33. Miller, J.W. and Craig, J.R. (1983) ‘Tetrahedrite-tennantite series compositional variations in the Cofer deposit, Mineral District, Virginia’. American Mineralogist, 68, 227–234.Google Scholar
  34. Mishra, B. and Mookherjee, A. (1986) ‘Analytical formulation of phase equilibrium in two observed sulfide-sulfosalt assemblages in the Rajpura-Duriba Polymetallic deposit’. Economic Geology, 81, 627–639.CrossRefGoogle Scholar
  35. Nash, J.T. (1975) ‘Geochemical studies in the Park City district: II. Sulfide mineralogy and minor-element chemistry, Mayflower mine’. Economic Geology, 70, 1038–1049.CrossRefGoogle Scholar
  36. Nikitin, W.W. (1929) ‘Parallele Verwach des Fahlerzes und seine chemische konstitution’. Zeitschrift für Kristallographie, 88, 54–62.Google Scholar
  37. O’Leary, M.J. and Sack, R.O. (1987) ‘Fe-Zn exchange reaction between tetrahedrite and sphalerite in natural environments’. Contributions to Mineralogy and Petrology (in press).Google Scholar
  38. Pauling, L. and Neuman, E.W. (1934) ‘The crystal structure of binnite, (Cu,Fe)12As4S13, and the chemical composition and structure of minerals in the tetrahedrite group’. Zeitschift für Kristallographie, 88, 54–62.Google Scholar
  39. Pattrick, R.A.D. (1978) ‘Microprobe analyses of cadmium-rich tetrahedrites from Tyndrum, Perthshire, Scotland’. Mineralogical Magazine, 42, 286–288.CrossRefGoogle Scholar
  40. Pattrick, R.A.D. and Hall, A.J. (1983) ‘Silver substitution into synthetic zinc, cadmium, and iron tetrahedrites’. Mineralogical Magazine, 47, 441–451.CrossRefGoogle Scholar
  41. Pattrick, R.A.D. (1984) ‘Sulphide mineralogy of the Tomnadashan copper deposit and the Corrie Buie lead veins, South Loch Tayside, Scotland’. Mineralogical Magazine, 48, 85–91.CrossRefGoogle Scholar
  42. Petersen, U., Noble, D.C., Arenas, M.J., and Goodell, P.C. (1977) ‘Geology of the Julcani mining district, Peru’. Economic Geology, 72, 931–949.CrossRefGoogle Scholar
  43. Peterson, R.C. and Miller, I. (1986) ‘Crystal structure and cation distribution in freibergite and tetrahedrite’. Mineralogical Magazine, 50, 717–721.CrossRefGoogle Scholar
  44. Petruk, W. and Staff (1971) ‘Characteristics of the sulfides. In J.L. Jambor, Eds., The Silver Arsenide Deposits of the Cobalt-Gowganda Region, Ontario’. Canadian Mineralogist, 11, 196–231.Google Scholar
  45. Pisutha-Arnond, V. and Ohmoto, H. (1983) ‘Thermal history and chemical and isotopic compositions of the ore-forming fluids responsible for the Kuroko massive sulfide deposits in the Hokuroku district of Japan’. In Hiroshi Ohmoto, and B.J. Skinner, Eds., The Kuroko and Related Volcanogenic Massive Sulfide, Deposits: Economic Geology Monograph 5, 523–558.Google Scholar
  46. Raabe, K.C. and Sack, R.O. (1984) ‘Growth zoning in tetrahedrite-tennantite from the Hock Hocking mine, Alma, Colorado’. Canadian Mineralogist, 22, 577–582.Google Scholar
  47. Riley, J.F. (1974) ‘The tetrahedrite-freibergite series, with reference to the Mount Isa Pb-Zn-Ag ore body’. Mineralium Deposita, 9, 117–124.CrossRefGoogle Scholar
  48. Robbins, M., Werthein, G.K., Sherwood, R.C., Buchanan, D.N.E. (1971) ‘Magnetic properties and site distributions in the system FeCr2O4-Fe3O4 (Fe2+Cr2-xFe3 x+04),. Journal of Physics and Chemistry of Solids, 32, 717–729.CrossRefGoogle Scholar
  49. Sack, R.O. (1980) ‘Some constraints on thermodynamic mixing properties of Fe-Mg olivines and orthopyroxenes’. Contributions to Mineralogy and Petrology, 71, 257–269.CrossRefGoogle Scholar
  50. Sack, R.O. (1982) ‘Spinels as petrogenetic indicators: activity-composition relations at low pressures’. Contributions to Mineralogy and Petrology, 79, 169–186.CrossRefGoogle Scholar
  51. Sack, R.O. and Loucks, R.R. (1985) ‘Thermodynamic properties of tetrahedrite-tennantites: constraints on the interdependence of the Ag⇄Cu, Fe⇄Zn, cu⇄Fe, and As⇄Sb exchange reactions’. American Mineralogist, 70, 1270–1289.Google Scholar
  52. Sandecki, J. and Amcoff, O. (1981) ‘On the occurrence of silver-rich tetrahedrite at Garpenberg Norra, Central Sweden’. Neues Jahrbuch fur Mineralogie Abhandlungen, 141, 324–340.Google Scholar
  53. Shannon, R.D. (1981) ‘Bond distances in sulfides and a preliminary table of sulfide crystal radii’. In Michael O’Keeffe and Alexandra Navrotsky, Eds., Structure and Bonding in Crystals 2, p. 53–70. Academic Press, New York.Google Scholar
  54. Shimada, N. and Hirowatari, F. (1972) ‘Argentian tetrahedrites from the Taishu-Shigekuma mine, Tsushima Island, Japan’. Mineralogical Journal, 7, 77–87.Google Scholar
  55. Shimazaki, Y. (1974) ‘Ore minerals of the kuroko-type deposits’. In S. Ishihara, Ed., Geology of the Kuroko Deposits: Mining Geology Special Issue 6, 311–322.Google Scholar
  56. Springer, G. (1969) ‘Electron probe analyses of tetrahedrite’. Neues Jahrbuch fur Mineralogie Monatshefte 1, 24–32.Google Scholar
  57. Thompson, J.B., Jr. (1969) ‘Chemical reactions in crystals’. American Mineralogist, 54, 341–375.Google Scholar
  58. Thompson, J.B., Jr. and Thompson, A.B. (1976) ‘A model system for mineral facies in pelitic schists’. Contributions to Mineralogy and Petrology, 58, 243–277.CrossRefGoogle Scholar
  59. Timofeyevskiy, D.A. (1967) ‘First find of Ag-rich freibergite in the USSR’. Doklady Akademii Nauk SSSR, 176, 1388–1391.Google Scholar
  60. White, J.L., Orr, R.L., Hultgren, R. (1957) ‘The thermodynamic properties of silver-gold alloys’. Acta Metallurgica, 5, 747–760.CrossRefGoogle Scholar
  61. Wu, I. and Petersen, U. (1977) ‘Geochemistry of tetrahedrite and mineral zoning at Casapalca, Peru’. Economic Geology, 72, 993–1016.CrossRefGoogle Scholar
  62. Wuensch, B.J. (1964) ‘The crystal structure of tetrahedrite, Cu12Sb4S13’. Zeitschrift für Kristallographie, 119,437–453.CrossRefGoogle Scholar
  63. Wuensch, B.J., Takeuchi, Y., and Nowacki, W. (1966) ‘Refinement of the crystal structure of binnite’. Zeitschrift fur Kristallographie, 123, 1–20.Google Scholar
  64. Yui, S. (1971) ‘Heterogeneity within a single grain of minerals of the tennantite-tetrahedrite series’. Society of Mining Geologists of Japan Special Issue, vol. 2, Proceedings of IMA-IAGOD Meeting, 1970, Joint Symposium Volume, 22–29.Google Scholar
  65. Zakrzewski, M.A. and Nugteren, H.W. (1984) ‘Mineralogy and origin of the distal volcanosedimentary deposit at the Hallefors silver mine, Bergslagen, central Sweden’. Canadian Mineralogist, 22, 583–593.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Richard O. Sack
    • 1
  • Denton S. Ebel
    • 1
  • Michael J. O’Leary
    • 1
  1. 1.Department of Earth and Atmospheric SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations