Advertisement

Aluminum Speciation in Metamorphic Fluids

  • G. M. Anderson
  • M. L. Pascal
  • Jilong Rao
Part of the NATO ASI Series book series (ASIC, volume 218)

Abstract

In this article we present the results of some studies of the composition of an aqueous phase in equilibrium with various three-phase assemblages in the system K2O-Al2O3-SiO2 (figure 1) such as quartz-feldspar-muscovite, muscovite-leucite-corundum, and several others. We interpret the results as indicating that the solutes are dominantly uncharged species, specifically alkali-alumina and alkalialumina- silica species.
Figure 1

The system K2O-Al2O3-SiO2 and the solid phases used in this study.

Keywords

Activity Coefficient Supercritical Water Ionization Constant Alkali Hydroxide Lithium Metaborate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcock, S.W. (1985) The Solubility of Some Aluminosilicate Minerals in Supercritical Water — An Experimental and Thermodynamic Study. Unpublished Ph.D. thesis, Carleton University, 337 p.Google Scholar
  2. Adcock, S.W. and MacKenzie, W.S. (1981) ‘The solubility of minerals in supercritical water. N.E.R.C. Prog, in Expt. Petrol. 5th rept. 1980 p. 9–10.Google Scholar
  3. Anderson, G.M. and Burnham, C.W. (1965) ‘The solubility of quartz in supercritical water’. Am. Jour. Sci. 263 p. 494–511.CrossRefGoogle Scholar
  4. Anderson, G.M. and Burnham, C.W. (1976) ‘Reactions of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressures’. Am. Jour. Sci. 265 p. 12–27.CrossRefGoogle Scholar
  5. Anderson, G.M. and Burnham, C.W. (1983) ‘Feldspar solubility and the transport of aluminum under metamorphic conditions’. Am. Jour. Sci. 283-A p. 283–297.Google Scholar
  6. Burnham, C.W. (1976) ‘Hydrothermal fluids at the magmatic stage’ in: Geochemistry of Hydrothermal Ore Deposits, 1st ed., H.L. Barnes, ed., New York: Holt, Rinehart and Winston, p. 34–76.Google Scholar
  7. Clark, S.P. Jr. (1966) ‘Solubility’. In Handbook of Physical Constants — revised edition, (ed. S.P. Clark, Jr.), Section 19, p. 415–436. Géol. Soc. Am. Mem. 97.Google Scholar
  8. Currie, K.L. (1968) ‘On the solubility of albite in supercritical water in the range 400 to 600°C and 750 to 3500 bars’. Am. Jour. Sci. 266 p. 321–341.CrossRefGoogle Scholar
  9. Davis, N.F. (1972) Experimental Studies in the System Sodium-Alumina Trisilicate — Water: Part 1: The Apparent Solubility of Albite in Supercritical Water. Unpublished Ph.D. thesis, Penn. State Univ. 322 p.Google Scholar
  10. Flowers, G.C (ms.) ‘Computation of the thermodynamic properties of reactions involving minerals and aqueous solutions with the aid of the personal computer’.Google Scholar
  11. Fournier, R.O. and Potter, R.W. II (1982) ‘An equation correlating the solubility of quartz in water from 25° to 900°C at pressures up to 10,000 bars’. Geochim. Cosmochim. Acta 46 p. 1969–1973.CrossRefGoogle Scholar
  12. Franck, E.U. (1956) ‘Hochverdichteter Wasserdampf III. Ionendissoziation von HC1, KOH und H2O in uberkritischem Wasser’. Zeits. Phys. Chem. 8 p. 12–206.Google Scholar
  13. Frantz, J.D. and Marshall, W.L. (1984) ‘Electrical conductances and ionization constants of salts, acids, and bases in supercritical aqueous fluids: I. Hydrochloric acid from 100 to 700°C and at pressures to 4000 bars’. Am. Jour. Sci. 284 p. 651–667.CrossRefGoogle Scholar
  14. Haar, L., Gallagher, J.S. and Kell, G.S. (1984) NBS/NRC Steam Tables. Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. Hemisphere Publishing Corp. [McGraw Hill].Google Scholar
  15. Helgeson, H.C, Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) ‘Summary and critique of the thermodynamic properties of rock-forming minerals’. Am. Jour. Sci. 278-A 229 p.Google Scholar
  16. Helgeson, H.C. and Kirkham, D.H. (1974) ‘Theroretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: I. Summary of the thermodynamic/ electrostatic properties of the solvent. Am. Jour. Sci. 274 p. 1089–1198.CrossRefGoogle Scholar
  17. Helgeson, H.C, Kirkham, D.H. and Flowers, G.C. (1981) ‘Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and relative partial molal properties to 600°C and 5kb’. Am. Jour. Sci. 281 p. 1249–1516.CrossRefGoogle Scholar
  18. Marshall, W.L. and Franck, E.U. (1981) ‘Ion product of water substance, 0–1000°C, 1–10,000 bars new international formulation and its background.’ Jour. Phys. Chem. Ref. Data 10 p. 295–304.CrossRefGoogle Scholar
  19. McKenzie, W.F. and Helgeson, H.C. (1984) ‘Estimation of the dielectric constant of water from experimental solubilities of quartz, and calculation of the thermodynamic properties of aqueous species to 900°C at 2Kb’. Geochim. et Cosmochim. Acta 48 p. 2167–2177CrossRefGoogle Scholar
  20. Morey, G.W. and Hesselgesser, J.M. (1951) ‘The solubility of some minerals in superheated steam at high pressures’. Econ. Géol. 46 p. 821–835.CrossRefGoogle Scholar
  21. Pascal, M.L. (1984) Nature et Proprietes des Especes en Solution dans le Systeme K 2 O-Na 2 O-SiO 2-Al 2 O 3 -H 2 O-HCl: Contribution Experimentale. These de doctorat d’etat, l’Universite Pierre et Marie Curie, Paris.Google Scholar
  22. Pitzer, K.S. (1983) ‘Dielectric constant of water at very high temperature and pressure’. Proc. Natl. Acad. Sci. U.S.A. 80 p. 4575–4576.CrossRefGoogle Scholar
  23. Ragnarsdottir, K.V. and Walther, J.V. (1985) ‘Experimental determination of corundum solubilities in pure water between 400 to 700°C and 1–3k bar’. Geochim. Cosmochim. Acta 49 p. 2109–2115.CrossRefGoogle Scholar
  24. Ritzert, C and Franck, E.U. (1968) ‘Elektrische Leitfahigkeit Wasseriger Losungen bei hohen Temperaturen und Drucken. I. KC, BaCl2, Ba(OH)2 und MgSO4 bis 750°C und 6 kbar’. Ber. Bunsenges Phys. Chem. 72 p. 798–808.Google Scholar
  25. Robie, R.A., Hemingway, B.S. and Fisher, J.R. (1979) ‘Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures’. U.S. Géol. Surv. Bull. 1452 Reprinted with corrections.Google Scholar
  26. Scarfe, G.M. Luth, W.C and Tuttle, O.F. (1966) ‘An experimental study bearing on the absence of leucite in plutonic rocks’. Am. Mineral. 51 p. 726–735.Google Scholar
  27. Spengler, C.J. (1965) The Upper Three-phase Region in a Portion of the System Potassium — Aluminum Metasilicate — Silicon Dioxide-Water at Water Pressures from Two to Seven Kilobars. Unpublished Ph.D. Penn. State Univ. 178p.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • G. M. Anderson
    • 1
  • M. L. Pascal
    • 2
  • Jilong Rao
    • 3
  1. 1.Department of GeologyUniversity of TorontoTorontoCanada
  2. 2.Centre de Recherches sur la Synthèse et Chimie des MinérauxC.N.R.S.OrléansFrance
  3. 3.University of Science and Technology of ChinaBeijingChina

Personalised recommendations