Skip to main content

Occurrence and Formation of Iron Oxides in Various Pedoenvironments

  • Chapter
Book cover Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The most likely occasion that soil scientists will come in contact with Fe oxides is when they note and try to explain the colors of soils. Many of these soil colors, notably those between red, brown, and yellow, are due to solid Fe oxides. Green-blue colors may also be explained by Fe compounds and even gray colors, although in a negative sense, reflect certain parts of the Fe cycle because the gray colors may indicate the removal of Fe oxides by microbial reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adams, W. A., and J. K. Kassim. 1984. Iron oxyhydroxides in soils developed from lower Palaeozoic sedimentary rocks in mid Wales and implications for some pedogenetic processes. J. Soil Sci. 35:117–126.

    CAS  Google Scholar 

  2. Berner, R. A. 1969. Goethite stability and the origin of red beds. Geochim. Cosmochim. Acta 33:267–273.

    CAS  Google Scholar 

  3. Bigham, J. M., D. C. Golden, L. H. Bowen, S. W. Buol, and S. B. Weed. 1978. Iron oxide mineralogy of well-drained Ultisols and Oxi-sols. I. Characterization of iron oxides on soil clays by Mössbauer spectroscopy, X-ray diffractometry and selected chemical techniques. Soil Sci. Soc. Am. J. 42:816–825.

    CAS  Google Scholar 

  4. Blakemore, R. 1975. Magnetotactic bacteria. Science 190:377–379.

    CAS  Google Scholar 

  5. Blume, H. P. 1968. Stauwasserböden. Arb. Univ. Hohenheim (Landwirtschaftl. Hochschule) 42. E. Ulmer, Stuttgart.

    Google Scholar 

  6. Bonifas, M., and P. Legoux. 1957. Presence de maghemite massive dans des produits d’altération lateritique. Bull. Serv. Carte Geol. Als.-Lorr. 10:7.

    CAS  Google Scholar 

  7. Brown, G. 1953. The occurrence of lepidocrocite in British soils. J. Soil Sci. 4:220–228.

    CAS  Google Scholar 

  8. Caillere, S., L. Gatineau, and S. Henin. 1960. Preparation a basse temperature d’hematite alumineuse. C. R. Acad. Sci. 250:3677–3679.

    CAS  Google Scholar 

  9. Campbell, A. S., and U. Schwertmann. 1984. Iron oxide mineralogy of placic horizons. J. Soil Sci. 35:569–582.

    CAS  Google Scholar 

  10. Carlson, L., and U. Schwertmann. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45:421–429.

    CAS  Google Scholar 

  11. Chen, C. C., J. B. Dixon, and F. T. Turner. 1980. Iron coating on rice roots: mineralogy and quantity-influencing factors. Soil Sci. Soc. Am. J. 44:635–639.

    CAS  Google Scholar 

  12. Childs, C. W., and A. D. Wilson. 1984. Iron oxide minerals in soils of the Ha’apai group, Kingdom of Tonga. Aust. J. Soil Res. 21:489–503.

    Google Scholar 

  13. Childs, C. W., C. J. Downes, and N. Wells. 1982. Hydrous iron oxide minerals with short range order deposited in a spring/stream system, Tongariro National Park, New Zealand. Aust. J. Soil Res. 20:119–129.

    CAS  Google Scholar 

  14. Chukhrov, F. V., L. P. Ermilova, A. I. Gorskhov, B. B. Zvyagin, A. P. Shukchlistov, O. W. Sidorenko, and V. V. Balashova. 1974. Über die Natur der Eisenoxide in geologisch jungen Bildungen. Chem. Erde 33:109–124.

    CAS  Google Scholar 

  15. Chukhrov, F. V., B. B. Zvyagin, A. I. Gorskhov, L. P. Ermilova, and V. V. Balashova. 1973. Ferrihydrite. Izvest. Akad. Nauk. SSSR, Ser. Geol. 4:23–33.

    Google Scholar 

  16. Clarke, E. T., R. H. Loeppert, and J. M. Ehrman. 1985. Crystallization of iron oxides on calcite surfaces in static systems. Clays Clay Miner. 33:152–158.

    CAS  Google Scholar 

  17. Cornell, R. M., and U. Schwertmann. 1979. Influence of organic anions on the crystallization of ferrihydrite. Clays Clay Miner. 27:402–410.

    CAS  Google Scholar 

  18. Correns, C. W., and W. von Engelhardt. 1941. Röntgenographische Untersuchungen über den Mineralbestand sedimentärer Eisenerze. Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 213:131–137.

    Google Scholar 

  19. Coventry, R. J., R. M. Taylor, and R. W. Fitzpatrick. 1983. Pedological significance of the gravel in some red and grey earth of central North Queensland. Aust. L. Soil Res. 21:219–240.

    CAS  Google Scholar 

  20. Curi, N. 1983. Lithosequence and toposequence of Oxisols from Goiás and Minas Geráis States, Brazil. Ph.D. Thesis, Purdue University.

    Google Scholar 

  21. Curi, N., and D. P. Franzmeier. 1984. Toposequence of Oxisols from the central plateau of Brazil. Soil Sci. Soc. Am. J. 48:341–346.

    CAS  Google Scholar 

  22. Daniels, R. B., E. E. Gamble, S. W. Buol, and H. H. Bailey. 1975. Free iron sources in an Aquult-Udult sequence from North Carolina Soil Sci. Soc. Am. Proc. 39:335–340.

    CAS  Google Scholar 

  23. Didier, P., D. Nahon, B. Fritz, and Y. Tardy. 1983. Activity of water as a geochemical controlling factor in ferricretes. A thermodynamic model in the system: kaolinite Fe-Al-oxyhydroxides. Sci. Géol. 71:35–44.

    Google Scholar 

  24. Eggleton, R. A., D. G. Schulze, and J. W. Stucki. 1987. Introduction to crystal structures of iron-containing minerals, p. 141–164. InJoseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils find Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  25. Evans, L. J., J. G. Roswell, and J. D. Aspinall. 1978. Massive iron formations in some gleysolic soils of the southwestern Ontario. Can. J. Soil Sci. 58:391–395.

    CAS  Google Scholar 

  26. Feitknecht, W., and W. Michaelis. 1962. Über die Hydrolyse von Eisen(III)-perchlorat-Lösungen. Helv. Chim. Acta 45:212–224.

    CAS  Google Scholar 

  27. Fey, M. V. 1983. Hypothesis for the pedogenic yellowing of red soil materials. Techn. Commun., Dept. Agric. Fisheries, Rep. South Africa 18:130–136.

    Google Scholar 

  28. Fey, M. V., and J. B. Dixon. 1981. Synthesis and properties of poorly crystalline hydrated aluminous goethites. Clays Clay Miner. 29: 91–100.

    CAS  Google Scholar 

  29. Fischer, W. R. 1987. Microbiological reactions of iron in soils, p. 715–748. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  30. Fitzpatrick, R. W. 1978. Occurrence and properties of iron and titanium oxides in soils along the eastern seaboard of South Africa. Ph.D. Thesis, University of Natal.

    Google Scholar 

  31. Fitzpatrick, R. W. 1987. Iron compounds as indicators of pedogenic processes: Examples from the Southern Hemisphere, p. 351–396. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals, D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  32. Fitzpatrick, R. W., and U. Schwertmann. 1982. Al-substituted goethite, an indicator of pedogenic and other weathering environments in South Africa. Geoderma 27:335–347.

    CAS  Google Scholar 

  33. Fitzpatrick, R. W., R. M. Taylor, U. Schwertmann, and C. W. Childs. 1985. Occurrence and properties of lepidocrocite in some soils of New Zealand, South Africa and Australia. Aust. J. Soil Res. 23:543–567.

    CAS  Google Scholar 

  34. Gastuche, M. C., T. Bruggenwert, and M. M. Mortland. 1964. Crystallization of mixed iron and aluminium gels. Soil Sci. 98:281–289.

    CAS  Google Scholar 

  35. Golden, D. C., L. H. Bowen, S. B. Weed, and J. M. Bigham. 1979. Mdssbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci. Soc. Am. J. 43:802–808.

    CAS  Google Scholar 

  36. Goodman, B. A., and D. G. Lewis. 1981. Mössbauen spectra of aluminous goethites (α-FeOOH). J. Soil Sci. 32:351–363.

    CAS  Google Scholar 

  37. Henmi, T., N. Wells, C. W. Childs, and R. L. Parfitt. 1980. Poorly-ordered iron rich precipitates from springs and streams on andesitic volcanoes. Geochim. Cosmochim. Acta 44:365–372.

    CAS  Google Scholar 

  38. Ibanga, I. J., S. W. Buol, S. B. Weed, and L. H. Bowen. 1983. Iron oxides in petroferric materials. Soil Sci. Soc. Am. J. 47:1240–1246.

    CAS  Google Scholar 

  39. Johnston, J. H., and G. P. Glasby. 1982. A Mossbauer spectroscopic and X-ray diffraction study of the iron mineralogy of some sediments from the southwestern Pacific basin. Marine Chemistry 11: 437–448.

    CAS  Google Scholar 

  40. Kämpf, N., and U. Schwertmann. 1982. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma 29:27–39.

    Google Scholar 

  41. Kärim, Z. 1984. Characteristics of ferrihydrites formed by oxidation of FeCl solutions containing different amounts of silica. Clays Clay Miner. 32:181–184.

    Google Scholar 

  42. Karim, M. J., and W. A. Adams. 1984. Relationships between sesquioxides, kaolinite, and phosphate sorption in a catena of Oxisols in Malawi. Soil Sci. Soc. Am. J. 48:406–409.

    CAS  Google Scholar 

  43. Kassim, J. K., S. N. Gafoor, and W. A. Adams. 1984. Ferrihydrite in pyrophoshate extracts of podzol B horizons. Clay Miner. 19:99–106.

    CAS  Google Scholar 

  44. Knight, R. J., and R. N. Sylva. 1974. Precipitation in hydrolysed iron(III) solutions. J. Inorg. Nucl. Chem. 36:591–597.

    CAS  Google Scholar 

  45. Langmuir, D. 1971. Particle size effect on the reaction goethite = hematite + water. Am. J. Sci. 271:147–156.

    CAS  Google Scholar 

  46. Langmuir, D. 1972. Correction: Particle size effect on the reaction goethite = hematite + water. Am. J. Sci. 272: 972.

    CAS  Google Scholar 

  47. Lewis, D. G., and U. Schwertmann. 1979. The influence of aluminum on the formation of iron oxides. IV. The influence of (Al), (OH), and temperature. Clays Clay Miner. 27:195–200.

    CAS  Google Scholar 

  48. Loeppert, R. H., and L. R. Hossner. 1984. Reactions of Fe(II) and Fe(III) with caicite. Clays Clay Miner. 32:213–222.

    CAS  Google Scholar 

  49. Lowenstam, H. A. 1962. Magnetite in dentide capping in recent chitons (Polyplacophora). Geol. Soc. Amer. Bull. 73: 435–436.

    CAS  Google Scholar 

  50. McIntosh, P. D., W. G. Lee, and T. Banks. 1983. Soil development and vegetation trends along a rainfall gradient on the east Otago Uplands. New Zealand J. Sci. 26:379–401.

    CAS  Google Scholar 

  51. Mohr, E. C. J., F. A. Van Baren, and J. Van Schuylenborgh. 1972. Tropical soils, Third Edition. Monton-Ichtior Baru-Van Hoeve, The Hague.

    Google Scholar 

  52. Murad, E. 1982. Ferrihydrite deposits on an artesian fountain in lower Bavaria. N. Jb. Miner. Mh., H. 2:45–56.

    Google Scholar 

  53. Murad, E. 1987. Properties and behavior of iron oxides as determined by Mössbuaer spectroscopy, p. 309–350. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  54. Murad, E., and U. Schwertmann. 1980. The Mössbauer spectrum of ferrihydrite and its relation to those of other iron oxides. Am. Mineral. 65:1044–1049.

    Google Scholar 

  55. Nahon, D., C. Janot, A. M. Karpoff, H. Paquet, and Y. Tardy. 1977. Mineralogy, petrography and structures of iron crusts (ferricretes) developed on sandstones in the western part of Senegal. Geoderma 19:263–277.

    CAS  Google Scholar 

  56. Norrish, K., and R. M. Taylor. 1961. The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci. 12:294–306.

    CAS  Google Scholar 

  57. Pena, F., and J. Torrent. 1984. Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain. Geoderma 33:283–296.

    CAS  Google Scholar 

  58. Robie, R. A., and D. R. Waldbaum. 1967. Thermodynamic properties of minerals and related substances at 298.15 K (25 °C) and one atmosphere (1.013 bars) pressure and at higher temperatures. Geol. Surv. Bull. 1259:256.

    Google Scholar 

  59. Ross, G. J., and C. Wang. 1982. Lepidocrocite in a calcareous, well drained soil. Clays Clay Miner. 30:394–396.

    CAS  Google Scholar 

  60. Santana, D. P. 1984. Soil formation in a toposequence of Oxisols from Patos De Minas region, Minas Gerais State, Brazil. Ph.D. Thesis, Purdue University.

    Google Scholar 

  61. Schulze, D. G. 1982. The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite. Dissertation, Technische Universität München.

    Google Scholar 

  62. Schulze, D. G. 1984. The influence of aluminum on iron oxides. VIII. Unit cell dimension of Al-substituted goethites and estimation of Al from them. Clays Clay Miner. 32:36–44.

    CAS  Google Scholar 

  63. Schulze, D. G., and U. Schwertmann. 1984. The influence of aluminium on iron oxides. X. The properties of Al-substituted goethite. Clay Miner. 19:521–529.

    CAS  Google Scholar 

  64. Schwertmann, U. 1959a. Über die Synthese definierter Eisenoxyde unter verschiedenen Bedingungen. Z. Anorg. Allg. Chem. 298:337–348.

    Google Scholar 

  65. Schwertmann, U. 1959b. Die fraktionierte Extraktion der freien Eisenoxide in Böden, ihre mineralogischen Formen und ihre Entstehungsweisen. Z. Pflanzenernähr., Düng., Bodenk. 84:194–204.

    CAS  Google Scholar 

  66. Schwertmann, U. 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature 212:645–646.

    CAS  Google Scholar 

  67. Schwertmann, U. 1969. Die Bildung von Eisenoxidmineralen. Fortschr. Miner. 46:274–285.

    Google Scholar 

  68. Schwertmann, U. 1971. Transformation of hematite to goethite in soils. Nature 232:624–625.

    CAS  Google Scholar 

  69. Schwertmann, U. 1973. Electron micrographs of soil lepidocrocites. Clay Miner. 10:59–63.

    CAS  Google Scholar 

  70. Schwertmann, U. 1984. The influence of aluminium on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl. Clay Miner. 19:9–19.

    CAS  Google Scholar 

  71. Schwertmann, U. 1987. Some properties of soil and synthetic iron oxides, p. 203–250. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  72. Schwertmann, U., and H. Fechter. 1984. The influence of aluminum on iron oxides. XI. Aluminum-substituted maghemite in soils and its formation. Soil Sci. Soc. Am. J. 48:1462–1463.

    CAS  Google Scholar 

  73. Schwertmann, U., and W. R. Fischer. 1973. Natural “amorphous” ferric hydroxide. Geoderma 10:237–247.

    CAS  Google Scholar 

  74. Schwertmann, U., and R. W. Fitzpatrick. 1977. Occurrence of lepi-docrocite and its association with goethite in Natal soils. Soil Sci. Soc. Am. J. 41:1013–1018.

    CAS  Google Scholar 

  75. Schwertmann, U., and B. Heinemann. 1959. Über das Vorkommen und die Entstehung von Maghemit in nordwestdeutschen Böden. Neues Jb. Miner. Mh. 8:174–181.

    Google Scholar 

  76. Schwertmann, U., and N. Kämpf. 1983. Oxidos de ferro jovens em ambientes pedogeneticos brasileiros. R. Bras. Ci. Solo 7:251–255.

    CAS  Google Scholar 

  77. Schwertmann, U., and N. Kämpf. 1985. Properties of goethite and hematite in kaolinitic soils of southern and central Brazil. Soil Sci. 139:344–350.

    CAS  Google Scholar 

  78. Schwertmann, U., and E. Murad. 1983. The effect of on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 31:277–284.

    CAS  Google Scholar 

  79. Schwertmann, U., and R. M. Taylor. 1972. The transformation of lepidocrocite to goethite. Clays Clay Miner. 20:151–158.

    CAS  Google Scholar 

  80. Schwertmann, U., and R. M. Taylor. 1973. The in vitro transformation of soil lepidocrocite to goethite. Pseudogley and Gley. Trans. Comm. V and VI Int. Soc. Soil Sci., Stuttgart-Hohenheim 1971:45–54.

    Google Scholar 

  81. Schwertmann, U., and R. M. Taylor. 1979. Natural and synthetic poorly crystallized lepidocrocite. Clay Miner. 14:285–293.

    CAS  Google Scholar 

  82. Schwertmann, U., and H. Thalmann. 1976. The influence of Fe(II), Si and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner, 11:189–200.

    CAS  Google Scholar 

  83. Schwertmann, U., W. R. Fischer, and H. Papendorf. 1968. The influence of organic compounds on the formation of iron oxides. Trans. 9th Int. Congr. Soil Sci., Adelaide, Australia 1:645–655.

    CAS  Google Scholar 

  84. Schwertmann, U., R. W. Fitzpatrick, R. M. Taylor, and D. G. Lewis. 1979. The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays Clay Miner. 27: 105–112.

    CAS  Google Scholar 

  85. Schwertmann, U., E. Murad, and D. G. Schulze. 1982. Is there Holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma 27:209–223.

    CAS  Google Scholar 

  86. Schwertmann, U., L. Carlson, and H. Fechter. 1984. Iron oxide formation in artificial ground waters. Schweiz. Z. Hydrol. 46:185–191.

    Google Scholar 

  87. Schwertmann, U., H. Kodama, and W. R. Fischer. 1986. Mutual interactions between organics and iron oxides, p. 223–250. In P. M. Huang (ed.) Interactions of Soil Minerals with Natural Organics and Microbes. Soil Sci. Soc. Am., Madison, WI.

    Google Scholar 

  88. Schwertmann, U., L. Carlson, and E. Murad. 1987. Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clays Clay Miner. 35: (in press).

    Google Scholar 

  89. Siradz, S. A. 1985. Distribution, properties and phosphorous requirements of soils of the Cobiac Valley, Darling Range, Western Australia. M. Sc. Thesis, University of Western Australia.

    Google Scholar 

  90. Süsser, P., and U. Schwertmann. 1983. Iron oxide mineralogy of ochreous deposits in drain pipes and ditches. Z. Kulturtechn. Flurber. 24:386–395.

    Google Scholar 

  91. Tamaura, Y., K. Ita, and T. Katsua. 1983. Transformation of γ-FeOOH to Fe3 O4 by adsorption of iron(II) ion on FeO(OH). J. Chem. Soc. Dalton Trans. 1983:189–194.

    Google Scholar 

  92. Tardy, Y., and D. Nahon. 1985. Geochemistry of laterites, stability of Al-goethtite, Al-hematite, and Fe3+-kaolinite in bauxites and ferricretes: An approach to the mechanism of concretion formation. Am. J. Sci. 285:865–903.

    CAS  Google Scholar 

  93. Taylor, R. M. 1980. Formation and properties of Fe(II) Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Miner. 15:369–382.

    CAS  Google Scholar 

  94. Taylor, R. M. 1984a. Influence of chloride on the formation of iron oxides from Fe(II) chloride. I. Effect of (Cl)/(Fe) on the formation of magnetite. Clays Clay Miner. 32:167–174.

    CAS  Google Scholar 

  95. Taylor, R. M. 1984b. Influence of chloride on the formation of iron oxides from Fe(II) chloride. II. Effect of (CI) on the formation of lepidocrocite and its crystallinity. Clays Clay Miner. 32:175–180.

    CAS  Google Scholar 

  96. Taylor, R. M. 1985. Some observations on the formation and transformation of soil iron oxides. NATO-Advanced Research Workshop, Ghent, 1984.

    Google Scholar 

  97. Taylor, R. M., and A. M. Graley. 1967. The influence of ionic environments on the nature of iron oxides in soils. J. Soil Sci. 18:341–348.

    CAS  Google Scholar 

  98. Taylor, R. M., and R. M. Mackenzie. 1980. The influence of aluminum on iron oxides. VI. The formation of Fe(II)-Al(III) hydroxychlorides, -sulphates, and -carbonates as new members of the pyroaurite group and their significance in soils. Clays Clay Miner. 28: 179–187.

    CAS  Google Scholar 

  99. Taylor, R. M., and U. Schwertmann. 1974. Maghemite in soils and its origin. I. Properties and observations on soil maghemites. Clay Miner. 10:289–298.

    CAS  Google Scholar 

  100. Taylor, R. M., and U. Schwertmann. 1978. The influence of aluminum on iron oxides. Part I. The influence of A1 on Fe-oxide formation from the Fe(II)-system. Clays Clay Miner. 26:373–383.

    CAS  Google Scholar 

  101. Thiel, R. 1963. Zum System α-FeOOH-αAlOOH. Z. Anorg. Allg. Chemie 326:79–78.

    Google Scholar 

  102. Tipping, E., C. Woof, and D. Cooke. 1981. Iron oxide from a seasonally anoxic lake. Geochim. Cosmochim. Acta 45:1411–1419.

    CAS  Google Scholar 

  103. Torrent, J., R. Guzmann, and M. A. Parra. 1982. Influence of relative humidity on the crystallization of Fe(III) oxides from ferrihydrite. Clays Clay Miner. 30:337–340.

    CAS  Google Scholar 

  104. Torrent, J., U. Schwertmann, H. Fechter, and F. Alferez. 1983. Quantitative relationships between soil colour and hematite content. Soil Sci. 136:354–358.

    CAS  Google Scholar 

  105. Towe, K. M., and W. F. Bradley. 1967. Mineralogical constitution of colloidal “hydrous ferric oxides.” J. Colloid Interface Sci. 24: 384–392.

    CAS  Google Scholar 

  106. Towe, K. M., and T. T. Moench. 1981. Electron-optical characterization of bacterial magnetite. Earth Planet. Sci. Letters 52:213–220.

    CAS  Google Scholar 

  107. Van der Marel, H. W. 1951. Gamma ferric oxide in sediments. J. Sediment. Petrol. 21:12–21.

    Google Scholar 

  108. Williams, R. 3. P. 1984. An introduction to biominerals and the role of organic molecules in their formation. Phil. Trans. R. Soc. Lond. 304:411–424.

    CAS  Google Scholar 

  109. Williams, J., and R. J. Coventry. 1979. The contrasting hydrology of red and yellow earths in a landscape of low relief, p. 385–395. In The hydrology of areas of low precipitation. Proc. Symp. Canberra, Int. Assoc. Sci. Hydrol., Publ. 128.

    Google Scholar 

  110. Wilson, M. J., and J. D. Russell. 1983. Melanosiderite is siliceous ferrihydrite. Min. Mag. 47:85–87.

    CAS  Google Scholar 

  111. Wolska, E. 1976. Über die Koexistenz der Aluminium- und Eisen(III)-hydroxide und -oxide. Mh. Chem. 107:349–357.

    CAS  Google Scholar 

  112. Yapp, C. J. 1983. Effects of AOH-FOH solid solution on goethite-hematite equilibrium. Clays Clay Miner. 31:239–240.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Schwertmann, U. (1988). Occurrence and Formation of Iron Oxides in Various Pedoenvironments. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics