Skip to main content

The Effect of Breaking Gravity Waves on the Distribution of Trace Species in the Middle Atmosphere

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 213))

Abstract

Gravity wave temperature amplitudes will increase upward into the middle atmosphere due to decreasing ambient density and will grow rapidly approaching a critical level. Waves will break when their amplitudes are so large that they become convectively unstable. Above the breaking level turbulence will mix tracers in the vertical and the mean flow will accelerate toward the phase speed of the wave as the wave is absorbed. A parameterization of these effects is employed in a two dimensional model of the middle atmosphere. Results from this coupled dynamical-radiative-photochemical model are used to review the effects of breaking gravity waves on the mean circulation and on the meridional distribution of trace species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apruzese, J. P., M. R. Schoeberl, and D. F. Strobel, 1982: Parameterization of IR cooling in a middle atmosphere dynamics model, I. The effects on the zonally averaged circulation. J. Geophys Res, 87, 8951.

    Article  Google Scholar 

  • Bevilacqua, R. M., W. J. Wilson, W. B. Ricketts, P. R. Schwartz, and R. J. Howard, 1985: Possible seasonal variability of mesospheric water vapor. Geophys. Res. Lett, 12, 397.

    Article  Google Scholar 

  • Bjarnason, G. G., S. Solomon, and R. R. Garcia, 1987: Tidal influences on vertical diffusion and diurnal variability of ozone in the mesosphere. J. Geophys. Res., 92, 5609–5620.

    Article  Google Scholar 

  • Brasseur, G., and D. Offermann, 1986: Recombination of atomic oxygen near the mesopause: Interpretation of rocket data. J. Geophys. Res., 91, 10818.

    Article  Google Scholar 

  • Brasseur, G., C. Brühl, P. J. Grützen, M. Dymek, E. Falise, M. Hitchman, and M. Pirre, 1987: A two-dimensional chemical-dynamical-radiative model of the middle atmosphere. In preparation.

    Google Scholar 

  • Carnahan, B., etal., 1969: Applied Numerical Methods, Wiley, 604 pp.

    Google Scholar 

  • Cunnold, D., F. Alyea, N. Phillip, and R. Prinn, 1975: A three-dimensional dynamical-chemical model of atmospheric ozone. J. Atmos. Sci., 82, 170.

    Article  Google Scholar 

  • DeMore, W. B., et al., 1985: Chemical kinetics and photochemical data for use in stratospheric modeling, evaluation number 7. JPL Publication 85–87, 226 pp., Jet Propulsion Lab., Pasadena, CA.

    Google Scholar 

  • Dunkerton, T. J., 1982: Stochastic parameterization of gravity wave stresses. J. Atmos. Sci., 89, 1711.

    Article  Google Scholar 

  • Fritts, D. C., 1984: Gravity wave saturation in the middle atmosphere: A review of theory and observations. Revs. Geophys. Space Phys., 22, 275.

    Article  Google Scholar 

  • Garcia, R. R., and S. Solomon, 1983: A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere. J. Geophys. Res., 88, 1379.

    Article  Google Scholar 

  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90, 3850.

    Article  Google Scholar 

  • Gille, J. C., L. Y. Lyjak, and A. K. Smith, 1987: The global residual mean circulation in the middle atmosphere for the northern winter period. J. Atmos. Sci., 44, 1437–1452.

    Article  Google Scholar 

  • Gordley, L. L., J. M. Russell, and E. E. Remsberg, 1985: Global lower mesospheric water vapor revealed by LIMS observations. In Atmospheric Ozone, Proc. Quadrennial Ozone Symposium, Reidel.

    Google Scholar 

  • Gray, L. G., and J. A. Pyle, 1986: The semiannual oscillation and equatorial tracer distributions. Quart. J. Roy. Meteor. Soc., 112, 387.

    Article  Google Scholar 

  • Haurwitz, B., 1961: Frictional effects and the meridional circulation in the mesosphere. J. Geophys. Res., 66, 2381.

    Article  Google Scholar 

  • Hitchman, M. H., and C. B. Leovy, 1986: Evolution of the zonal mean state in the equatorial middle atmosphere during October 1978-May 1979. J. Atmos. Sci., 48, 3159–3176.

    Article  Google Scholar 

  • Hitchman, M. H., and G. Brasseur, 1987: Rossby wave action as an interactive tracer in a 2-D model: parameterization of wave driving and eddy diffusivity. To be submitted to J. Geophys. Res.

    Google Scholar 

  • Hodges, R. R., 1969: Eddy diffusion coefficients due to instabilities in internal gravity waves. J. Geophys. Res., 74, 4087.

    Article  Google Scholar 

  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the middle atmosphere. J. Atmos. Set., 89, 791.

    Article  Google Scholar 

  • Holton, J. R.J. 1983: The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Set., 40, 2497.

    Article  Google Scholar 

  • Holton, J. R., and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pageoph, 118, 284.

    Article  Google Scholar 

  • Jones, R. L., and J. A. Pyle, 1984: Observations of CH4 and N20 by the Nimbus 7 SAMS: A comparison with in-situ data and two-dimensional numerical model calculations. J. Geophys. Res., 89, 5263.

    Article  Google Scholar 

  • Leovy, C., 1964: Simple models of thermally driven mesospheric circulation. J. Atmos. Set., 21, 327.

    Article  Google Scholar 

  • Lindzen, R. S., 1967: Thermally driven diurnal tide in the atmosphere. Quart. J. R. Meteorol. Soc., 98, 18.

    Article  Google Scholar 

  • Lindzen, R. S., 1968: The application of classical atmospheric tidal theory. Proc. R. Soc. London Set. A, 808, 299.

    Article  Google Scholar 

  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 9707.

    Article  Google Scholar 

  • Matsuno, T., 1982: A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves. J. Meteor. Soc. Japan, 60, 215.

    Google Scholar 

  • Murgatroyd, R. J., and F. Singleton, 1961: Possible meridional circulations in the stratosphere and mesosphere. Quart. J. R. Meteor. Soc., 87, 125.

    Article  Google Scholar 

  • Pitteway, M.L.V., and C. O. Hines, 1963: The viscous damping of atmospheric gravity waves. Can. J. Phys., 48, 2222.

    Google Scholar 

  • Schoeberl, M. R., and D. F. Strobel, 1978: The zonally averaged circulation of the middle atmosphere. J. Atmos. Set., 85, 577.

    Article  Google Scholar 

  • Smith, A. K., and L. V. Lyjak, 1985: An observational estimate of gravity wave drag from the momentum balance in the middle atmosphere. J. Geophys. Res., 90, 2233.

    Article  Google Scholar 

  • Solomon, S., J. T. Kiehl, R. R. Garcia, and W. Grose, 1986: Tracer transport by the diabatic circulation deduced from satellite observations. J. Atmos. Set., 43, 1603.

    Article  Google Scholar 

  • Thomas, R. J., C. A. Barth, and S. Solomon, 1984: Seasonal variations of ozone in the upper mesosphere and gravity waves. Geophys. Res. Lett., 11, 673.

    Google Scholar 

  • Wehrbein, W. M., and C. B. Leovy, 1982: An accurate radiative heating and cooling algorithm for use in a dynamical model of the middle atmosphere. J. Atmos. Set., 89, 1532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holand.

About this chapter

Cite this chapter

Brasseur, G., Hitchman, M. (1987). The Effect of Breaking Gravity Waves on the Distribution of Trace Species in the Middle Atmosphere. In: Visconti, G., Garcia, R. (eds) Transport Processes in the Middle Atmosphere. NATO ASI Series, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3973-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3973-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8262-4

  • Online ISBN: 978-94-009-3973-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics