Skip to main content

A Limit Theorem for Some Modified Chi-Square Statistics when the Number of Classes Increases

  • Chapter
Mathematical Statistics and Probability Theory

Abstract

In the presence of a location-scale nuisance parameter we consider three chi-square type tests based on increasingly finer partitions as the sample size increases. The asymptotic distributions are derived both under the null-hypothesis and under local alternatives, obtained by taking contamination families of densities between the null-hypothesis and fixed alternative hypotheses. As a consequence of our main theorem it is shown that the Rao-Robson-Nikulin test asymptotically dominates the Watson-Roy test and the Dzhaparidze-Nikulin test. Conditions are given when it is optimal to let the number of classes increase to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickel, P.J. (1982), ‘On adaptive estimation’, Ann. Statist. 10, 647–671.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bickel, P.J. and Rosenblatt, M. (1973), ‘On some global measures of the deviation of density function estimates’, Ann. Statist. 1, 1071–1095.

    Article  MathSciNet  MATH  Google Scholar 

  3. Csörgö, M. and Revesz, P. (1981), Strong Approximations in Probability and Statistics, Academic Press.

    Google Scholar 

  4. Drost, F.C. (1986), ‘Generalized chi-square goodness-of-fit tests for location-scale models when the number of classes tends to infinity’, Technical report 309, Dept. of Mathematics and Computer Science, Free University, Amsterdam.

    Google Scholar 

  5. Dzhaparidze, K.O. and Nikulin, M.S. (1974), ‘On a modification of the standard statistics of Pearson’, Theory of probobility and its Applications 19, 851–853.

    Article  MATH  Google Scholar 

  6. Kallenberg, W.C.M., Oosterhoff, J. and Schriever, B.F. (1985), ‘The number of classes in chi-squared goodness-of-fit tests’, J. Amer. Statist. Assoc. 80, 959–968.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lecam, L., Mahan, C.M. and Singh, A. (1983), ‘An extension of a theorem of H. Chernoff and E.L. Lehmann’, in: Rizvi, M.H. Rustagi, J.S. and Siegmund, D. (ed’s), Recent Advances in Statistics, Academic Press, New York, 303–337.

    Google Scholar 

  8. Lehmann, E.L. (1959), Testing Statistical Hypotheses, Wiley, New York.

    MATH  Google Scholar 

  9. McCulloch, C.E. (1985), ‘Relationships among some chi-square goodness of fit statistics’, Commun. Statist. — Theor. Math. 14 (3), 593–603.

    Article  MathSciNet  MATH  Google Scholar 

  10. Moore, D.S. (1977), ‘Generalized inverses, Wald’s method, and the construction of chi-squared tests of fit’, J. Amer. Statist. Assoc. 72, 131–137.

    Article  MathSciNet  MATH  Google Scholar 

  11. Moore, D.S. and Spruill, M.C. (1975), ‘Unified large-sample theory of general chi-squared statistics for tests of fit’, Ann. Statist. 3, 599–616.

    MathSciNet  MATH  Google Scholar 

  12. Morris, C. (1975), ‘Central limit theorems for multinomial sums’, Ann. Statist. 3, 165–188.

    Article  MathSciNet  Google Scholar 

  13. Nikulin, M.S. (1973), ‘Chi-square test for continuous distributions with shift and scale parameters’, Theory of Probability and its Applications 3, 559–668.

    Google Scholar 

  14. Rao, K.C. and Robson, D.S. (1974), ‘A chi-square statistic for goodness of fit tests within the exponential family’, Comm. Statist. 3, 1139–1 153.

    MathSciNet  Google Scholar 

  15. Roy, A.R. (1956), ‘On x statistics with variable intervals’, Technical report No. 1, Stanford Univ. Dept. of Statistics.

    Google Scholar 

  16. Spruill, M.C. (1976), ‘A comparison of chi-square goodness-of-fit tests based on approximate Bahadur slope’, Ann. Statist. 4, 409–412.

    Article  MathSciNet  MATH  Google Scholar 

  17. Stephens, M.A. (1974), ‘EDF statistics for goodness of fit and some comparisons’, J. Amer. Statist. Assoc. 69, 703–737.

    Article  Google Scholar 

  18. Watson, G.S. (1957), ‘The X2 goodness-of-fit test for normal distributions’, Biometrika 44, 336–348.

    MathSciNet  MATH  Google Scholar 

  19. Watson, G.S. (1958), ‘On chi-square goodness-of-fit tests for continuous distributions’, J.R. Statist. Soc. Ser. B 20, 44–61.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Drost, F.C. (1987). A Limit Theorem for Some Modified Chi-Square Statistics when the Number of Classes Increases. In: Bauer, P., Konecny, F., Wertz, W. (eds) Mathematical Statistics and Probability Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3965-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3965-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8259-4

  • Online ISBN: 978-94-009-3965-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics