Skip to main content

Stochastic Differential Geometry: An Introduction

  • Chapter
  • 488 Accesses

Abstract

Stochastic calculus can be used to provide a satisfactory theory of random processes on differentiable manifolds and, in particular, a description of Brownian motion on a Riemannian manifold which lends itself to constructions generalizing the classical development of smooth paths on a manifold. An introduction to this theory is given, and a survey is made of the relationship between curvature properties of the manifold and the asymptotic behaviour of the Brownian motion on the manifold. It is then explained how these results can be used to prove geometrical theorems concerning special classes of maps between manifolds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ancona, A. (1985) Variétés a courbure negative, opérateurs elliptiques, et frontière de Martin, CRAS A301, 193–196.

    MathSciNet  MATH  Google Scholar 

  • Anderson, M. T. (1983) The Dirichlet problem at infinity for manifolds of negative curvature, J. Diff. Geom. 18, 701–721.

    MATH  Google Scholar 

  • Anderson, M. and Schoen, R. (1985) Positive harmonic functions on complete manifolds of negative curvature, Ann. Math. 121, 429–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Antonelli, P. L., Chapin, J., and Voorhees, B. H. (1980) The geometry of random genetic drift VI. A random selection diffusion model, Adv. Appi. Prob. 12, 50–58 (see also references therein).

    Article  MathSciNet  MATH  Google Scholar 

  • Azencott, R. (1974) Behavior of diffusion semigroups at infinity, Bull. Sci. Math. 102, 193–240.

    MathSciNet  MATH  Google Scholar 

  • Azencott, R. et al., (1981) Geodésics et diffusions en temps petit, Asterisque 84–85, Soc. Math, de France.

    Google Scholar 

  • Baxendale, P. (1980) Wiener processes on manifolds of maps, Proc. Royal Soc. Edinburgh, 87A, 127–152.

    MathSciNet  MATH  Google Scholar 

  • Bishop, R. and Crittenden, R. (1964) Geometry of Manifolds, Academic Press, New York.

    MATH  Google Scholar 

  • Bismut, J.-M. (1981) Mecanique Aleatoire, LN Math. 866, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Bismut, J.-M. (1984a) Large Deviations and the Malliavin calculus, Birkhauser, Basle.

    MATH  Google Scholar 

  • Bismut, J.-M. (1984b) The Atiyah—Singer theorems: A probabilistic approach I, II, J. Funct. Analysis 57, 56–99 and 329–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Carverhill, A. and Elworthy, K. D. (1983) Flows of stochastic dynamical systems — the functional analytic approach, ZW 65, 245–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Chavel, I. (1984) Eigenvalues in Riemannian geometry, Academic Press, New York.

    MATH  Google Scholar 

  • Chavel, I. and Feldman, E. A. (1986) The Wiener sausage and a theorem of Spitzer in Riemannian Manifolds, in J. Chao and N. Woycynski, (eds.) Probability and Harmonic Analysis, Marcel Dekker, New York, pp. 45–60.

    Google Scholar 

  • Cheeger, J. and Ebin, D. G. (1975) Comparison Theorems in Riemannian Geometry, North Holland, Amsterdam.

    MATH  Google Scholar 

  • Chung, K. L. and Williams, R. (1984) Introduction to Stochastic Integration, Birkhauser, Basle.

    Google Scholar 

  • Darling, R. W. R. (1982) Martingales in manifolds — definitions, examples, and behaviour under maps, in Sem. Prob. XVI (supplement), LN Math. 921, Springer-Verlag, Berlin, pp. 217–236.

    Google Scholar 

  • Darling, R. W. R. (1983) Convergence of martingales on a Riemannian manifold, Publ. RIMS Kyoto Univ. 19, 753–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Darling, R. W. R. (1984a) Approximating Itô integrals of differential forms and geodesic deviation, ZW 65, 563–572.

    Article  MathSciNet  MATH  Google Scholar 

  • Darling, R. W. R. (1984b) On the convergence of Gangolli processes to Brownian motion on a manifold, Stochastics 12, 277–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Darling, R. W. R. (1985) Convergence of martingales on manifolds of negative curvature, Ann. Inst. H. Poincaré 21, 157–175.

    MathSciNet  MATH  Google Scholar 

  • Darling, R. W. R. (to appear) The angular part of Brownian motion as a martingale on the sphere. Preprint.

    Google Scholar 

  • Davis, B. (1975) Brownian motion and Picard’s theorem, TAMS 213, 353–362.

    MATH  Google Scholar 

  • Debiard, A., Gaveau, B., and Mazet, E. (1976) Théorèmes de comparaison en geométrie Riemannienne, Publ. RIMS Kyoto Univ. 12, 391–425.

    Article  MathSciNet  MATH  Google Scholar 

  • Dellacherie, C and Meyer, P.-A. (1978) Probabilities and Potential, A, North Holland, Amsterdam.

    Google Scholar 

  • Dellacherie, C and Meyer, P.-A. (1982) Probabilities and Potential, B, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Doob, J. L. (1984) Potential Theory and its Probabilistic Counterpart, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Ducourtioux, J. (1976) Formule de la moyenne pour les applications harmoniques, Bull. Sci. Math. 100, 229–239.

    MathSciNet  MATH  Google Scholar 

  • Ducourtioux, J. (1978) Temps de vie des solutions de l’équation de la chaleur de Eells—Sampson, CRAS A286, 333–336.

    MathSciNet  MATH  Google Scholar 

  • Ducourtioux, J. (1983) Temps de vie du brownien et conditions de courbure, CRAS A296, 769–772.

    MathSciNet  MATH  Google Scholar 

  • Durrett, R. (1984) Brownian Motion and Martingales in Analysis, Wadsworth, U.S.A.

    MATH  Google Scholar 

  • Durrett, R. (1986) Reversible diffusion processes, in J. Chao and W. Woyczynski, (eds.), Probability and Harmonic Analysis, Marcel Dekker, New York, pp. 67–89.

    Google Scholar 

  • Dynkin, E. B. (1961) Nonnegative eigenfunctions of the Laplace—Beltrami operator and Brownian motion in certain symmetric spaces, Dok. Akad. Nauk. SSSR 141, 1433–1436.

    MathSciNet  Google Scholar 

  • Eells, J. and Elworthy, K. D. (1970) Wiener integration on certain manifolds, in Problems in Nonlinear Analysis, CIME IV, 67–94.

    Google Scholar 

  • Eells, J. and Lemaire, L. (1978) A report on harmonic maps, Bull. LMS 10, 1–68.

    MathSciNet  MATH  Google Scholar 

  • Eells, J. and Lemaire, L. (1983) Selected Topics in Harmonic Maps, CBMS regional conference series 50, AMS, Providence.

    Google Scholar 

  • Elworthy, K. D. (1978) Stochastic dynamical systems and their flows, in Stochastic Analysis, Academic Press, New York, pp. 79–95.

    Google Scholar 

  • Elworthy, K. D. (1982) Stochastic Differential Equations on Manifolds, CUP, London.

    MATH  Google Scholar 

  • Elworthy, K. D. and Kendall, W. S. (1986) Factorization of Brownian motion and harmonic maps, in K. D. Elworthy (ed.), From Local Times to Global Geometry, Control and Physics, Pitman Research Notes in Maths, No. 150, pp. 75–83.

    Google Scholar 

  • Elworthy, K. D. and Truman, A. (1982) The diffusion equation and classical mechanics: an elementary formula, In Albeverio et al., (eds.), Stochastic Processes in Quantum Physics, LN Physics 173, Springer-Verlag, Berlin, pp. 136–146.

    Chapter  Google Scholar 

  • Emery, M. and Zheng, W. A. (1984) Fonctions convexes et semimartingales dans une variété, Sem. Prob. XVIII, LN Maths 1059, Springer-Verlag, Berlin, pp. 501–518.

    Google Scholar 

  • Fuglede, B. (1978) Harmonie morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28, 107–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Fukushima, M. and Okada, M. (1984) On conformai martingale diffusions and pluripolar sets, J. Fund. Anal. 55, 377–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Gangolli, R. (1964) On the construction of certain diffusions on a differentiable manifold, ZW 2, 406–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg, S. I., Ishihara, T., and Petridis, N. C. (1975) Mappings of bounded dilatation of Riemannian manifolds, J. Diff. Geom. 10, 619–630.

    MathSciNet  MATH  Google Scholar 

  • Goldberg, S. I. and Mueller, C. (1983) Brownian motion, geometry, and generalizations of Picard’s little theorem, Ann. Prob. 11, 833–846.

    Article  MathSciNet  MATH  Google Scholar 

  • Gray, A. and Pinsky, M. A. (1985) The mean exit time from a small geodesic ball in a Riemannian manifold, Bull. Sci. Math. 107, 1–26.

    MathSciNet  Google Scholar 

  • Greene, R. E. and Wu, H. (1979) Function Theory on Manifolds which Possess a Pole, LN Math. 699, Springer-Verlag, Berlin.

    Google Scholar 

  • Hsu, P. and March, P. (1985) The limiting angle of certain Brownian motions, Comm. Pure Appl. Maths 38, 755–768.

    Article  MathSciNet  MATH  Google Scholar 

  • Ichihara, K. (1982) Curvature, geodesies, and the Brownian motion on a Riemannian manifold I, II, Nagoya Math. J. 87, 101–114 and 115–125.

    MathSciNet  MATH  Google Scholar 

  • Ichihara, K. (to appear) Comparison theorems for Brownian motions on Riemannian manifolds and their applications, J. Multivariate Analysis.

    Google Scholar 

  • Ikeda, N. and Watanabe, S. (1981) Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam and Tokyo.

    MATH  Google Scholar 

  • Ikeda, N. and Watanabe, S. (1983) An introduction to Malliavin’s calculus, in Taniguchi Symposium, Katata 1983, pp. 1–52.

    Google Scholar 

  • Ikeda, N. and Watanabe, S. (1984) Stochastic flows of diffeomorphisms, in M. Pinsky, (ed.), Advances in Probability, No. 7, Marcel Dekker, New York.

    Google Scholar 

  • Itô, K. (1950) On stochastic differential equations on a differentiable manifold. 1, Nagoya Math. J. 1, 35–47.

    MathSciNet  MATH  Google Scholar 

  • Kendall, D.G. (1977) The diffusion of shape (abstract), Adv. Appl. Prob. 9, 428–430.

    Article  Google Scholar 

  • Kendall, W. S. (1981) Brownian motion, negative curvature, and harmonic maps, in D. Williams, (ed.) Stochastic Integrals, LN Math 851, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kendall, W. S. (1983) Brownian motion and a generalised little Picard’s theorem, TAMS 275, 751–760.

    MathSciNet  MATH  Google Scholar 

  • Kendall, W. S. (1984) Brownian motion on a surface of negative curvature, Sem. Prob. XVIII, LN Math 1059, Springer-Verlag, Berlin.

    Google Scholar 

  • Kendall, W. S. (1986a) Stochastic differential geometry, a coupling property, and harmonic maps, Proc. LMS, 33, 554–566.

    MathSciNet  MATH  Google Scholar 

  • Kendall, W. S. (1986b) The Brownian coupling property and nonnegative Ricci curvature, Stochastics 19, 111–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Kendall, W. S. (to appear) The radial part of Brownian motion on a manifold; semimartingale properties. Ann. Prob.

    Google Scholar 

  • Kifer, Yu. (1976) Brownian motion and harmonic functions on manifolds of negative curvature, Th. Prob. Applic. 21, 81–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Kifer, Yu. (1982) Entropy via random perturbations, TAMS 282, 589–601.

    Article  MathSciNet  Google Scholar 

  • Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry I, Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Kunita, H. (1984) Stochastic differential equations and stochastic flows of homeomorphisms, in Stochastic Analysis and Applications, Advances in Probability and Related Topics No. 7, Marcel Dekker, New York.

    Google Scholar 

  • Li, P. and Schoen, R. (1984) Lp and mean—value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153, 279–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindvall, T. and Rogers, L. C. G. (1986) Coupling of multidimensional diffusions by reflection, Ann. Prob. 14, 860–872.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons, T. and McKean, H. P. (1984) Winding of the plane Brownian motion, Adv. Math. 51 212–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons, T. and Sullivan, D. (1984) Function theory, random paths, and covering spaces, J. Diff. Geom. 19, 299–323.

    MathSciNet  MATH  Google Scholar 

  • McConnell, J. (1980) Rotational Brownian Motion and Dielectric Theory, Academic Press, New York.

    Google Scholar 

  • McKean, H. P. (1969) Stochastic Integrals, Academic Press, New York.

    MATH  Google Scholar 

  • Malliavin, P. (1974) Formule de la moyenne, calcul de perturbation, et théorèmes d’annulation pour les formes harmoniques, J. Funct. Anal. 17, 274–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Malliavin, P. (1978) Geométrie differerentielle stochastique, Sem. de Math. Sup. Montreal.

    Google Scholar 

  • Manabe, S. (1982) Stochastic Intersection number and homological behaviors of diffusion processes on Riemannian manifolds, Osaka J. Math. 19, 429–457.

    MathSciNet  MATH  Google Scholar 

  • Meyer, P.-A. (1981) Geométrie stochastique sans larmes, Sem. Prob. XV, LN Math. 850, Springer- Verlag, Berlin.

    Google Scholar 

  • Milnor, J. W. (1963) Morse Theory, Princeton University Press.

    MATH  Google Scholar 

  • Molchanov, S. A. (1975) Diffusion Processes and Riemannian Geometry, Russian Math. Surveys 30, 1–53.

    Article  MATH  Google Scholar 

  • Norris, J., Roger, L. C. G., and Williams, D. (1986) Brownian motion of ellipsoids, TAMS 294, 757–765.

    Article  MATH  Google Scholar 

  • Orihara, A. (1970) On random ellipsoid, J. Fac. Sci. Univ. Tokyo 17, 73–85.

    MathSciNet  MATH  Google Scholar 

  • Pinsky, M. (1977) An individual ergodic theorem for Brownian motion on a surface of negative curvature, in Proc. Conf. Stochastic Differential Equations, Academic Press, New York, pp. 231–240.

    Google Scholar 

  • Pinsky, M. (1978) Stochastic Riemannian geometry, in Bharucha-Reid (eds.), Probabilistic Analysis and Related Topics, 1, Academic Press, London.

    Google Scholar 

  • Pinsky, M. (1983) Brownian motion and Riemannian geometry, in A. Gray et al. (eds.) Differential Geometry, Birkhauser, Boston.

    Google Scholar 

  • Pitman, J. W. and Yor, M. (1984) The asymptotic joint distribution of windings of planar Brownian motion, Bull. AMS. 10, 109–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Prat, J.-J. (1975) Étude asymptotique et convergence angulaire du mouvement brownien sur une variété a courbure negative. CRAS A280, 1539–1542.

    MathSciNet  MATH  Google Scholar 

  • Price, G. C. and Williams, D. (1983) Rolling with slipping I, Sem. Prob. XVII, LN Math. 986, Springer-Verlag, Berlin.

    Google Scholar 

  • Roberts, P. H. and Ursell, H. D. (1960) Random walk on a sphere and on a Riemannian manifold, J. Roy. Soc. A252, 317–356.

    MathSciNet  MATH  Google Scholar 

  • Schwartz, L. (1984) Semimartingales and their Stochastic Calculus, Univ. Montreal.

    MATH  Google Scholar 

  • Spitzer, F. (1964) Electrostatic capacity, heat flow, and Brownian motion, ZW 3, 110–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Stroock, D. W. and Varadhan, S. R. S. (1979) Multidimensional Diffusion Processes, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Sullivan, D. (1983) The Dirichlet problem at infinity for a negatively curved manifold, J. Diff. Geom. 18, 723–732.

    MATH  Google Scholar 

  • Van Den Berg, M. and Lewis, J. T. (1985) Brownian motion on a hypersurface, Bull. LMS. 17, 144–150.

    MATH  Google Scholar 

  • Varadhan, S. R. S. (1967) Diffusion processes in a small time interval, Comm. Pure Appi. Math. 20, 659–685.

    Article  MathSciNet  MATH  Google Scholar 

  • Varopoulos, N. Th. (1984) Brownian motion and Random Walks on manifolds, Ann. Inst. Fourier (Grenoble) 34 (II), 243–269.

    Article  MathSciNet  MATH  Google Scholar 

  • Warner, F. W. (1971) Foundations of Differentiable Manifolds and Lie Groups, Scott, Foreman & Co.

    MATH  Google Scholar 

  • Watling, K. (in preparation) Elementary formulae for the heat kernel. Preprint.

    Google Scholar 

  • Yamada, T. (1973) On a comparison theorem for solutions of stochastic differential equations and its applications, J. Math. Kyoto Univ. 13, 497–512.

    MathSciNet  MATH  Google Scholar 

  • Yau, S.-T. (1975) Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28, 201–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Yau, S.-T. (1978) On the heat kernel of a complete Riemannian manifold, J. Math, pures appl. 57, 191–201.

    MathSciNet  MATH  Google Scholar 

  • Yosida, K. (1949) Brownian motion on the surface of the 3-sphere, Ann. Math. Statist. 20, 292–296.

    Article  MathSciNet  Google Scholar 

  • Zheng, W. A. (1983) Sur le théorème de convergence des martingales dans une variété Riemanniane, ZW 63, 511–515.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Kendall, W.S. (1987). Stochastic Differential Geometry: An Introduction. In: Ambartzumian, R.V. (eds) Stochastic and Integral Geometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3921-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3921-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8239-6

  • Online ISBN: 978-94-009-3921-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics