Skip to main content
  • 51 Accesses

Abstract

Results from measurements of the composition and size distribution of aerosol particles advected into central Alaska are reported. It is argued that the aerosol predominant in number, but not necessarily in mass, consists of submicron droplets of sulfuric acid. The major aerosol by mass in arctic air is a removal-resistant accumulation mode (radius ∼ 0.3μm) probably to large extent originating from pollution sources ∼ 103 km upstream (mostly in central Eurasia) from the site in Alaska. The accumulation mode aerosol disappears when arctic air masses are replaced with relatively warmer air masses flowing in from the northern Pacific. The latter air mass systems have been strongly scavenged by clouds and precipitation associated with the Aleutian low pressure system and with forced orographic uplifting over the Alaska Mountain Range; nevertheless the Pacific air masses contain substantial (i.e., 500’1000 cm-3) quantities of small (several hundredths of a micron in radius) particles. Arctic-derived air masses are enriched in large (i.e, ∼ 0.3 μ) particles compared to Pacific Marine air masses, whereas the opposite trend is found for smaller, Aitken, particles. The smaller particles are found in greatest abundance in warmer air mass systems, presumably because of the relatively brief time since such air masses were last exposed to sunlight with attendant production of small particles from the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayers, G. P., An improved thin-film sulfate test for submicron particles, Atmos. Env., 11, 391–395, 1977.

    Article  Google Scholar 

  • Agarwal, J. K. and G. J. Sem, Continuous flow, single-particle-counting condensation nucleus counter, J. Aerosol Sci., 11, 343–357, 1980.

    Article  Google Scholar 

  • Barrie, L. A., R. M. Hoff and S. M. Daggupaty, The influence of mid-latitudinal pollution sources on haze in the Canadian Arctic, Atmos. Env., 15, 1407–1419, 1981.

    Article  Google Scholar 

  • Bigg, E. K., A. Ono and J. A. Williams, Chemical tests for individual submicron aerosol particles, Atmos. Env., 8, 1–13, 1974.

    Article  Google Scholar 

  • Bodhaine, B. A., J. M. Harris and G. A. Herbert, Aerosol light scattering and condensation nuclei measurements at Barrow, Alaska, Atmos. Env., 15, 1375–1390, 1981.

    Article  Google Scholar 

  • Cahill, T. A. and R. A. Eldred, Elemental compositions of Arctic particulate matter, Geophys. Res. Lett., 11, 413–416, 1984.

    Article  Google Scholar 

  • Crutzen, P. J., The possible importance of CSO for the sulfur layer of the stratosphere, Geophys. Res. Lett., 3, 73–76, 1976.

    Article  Google Scholar 

  • Flowers, E. G., R. A. McCormick, K. R. Kurfis, Atmospheric turbidities over the United States, 1961–1966, J. Appl. Meteor., 8(6), 955–962, 1969.

    Article  Google Scholar 

  • Garvey, D. M. and R. G. Pinnick, Response characteristics of the Particle Measuring Systems active scattering aerosol spectrometer probe (ASASP-X), Elsevier Press, Aerosol Science & Technology, 2, 477–488, 1983.

    Article  Google Scholar 

  • Gras, J. L., An investigation of a non-linear iterative procedure for inversion of particle size distributions, Atmos. Env., 17, 883–894 1983.

    Article  Google Scholar 

  • Hayes, D., K. Snetsinger, B. Ferry, B. Oberback, F. N. Farlow, Reactivity of stratospheric aerosols to small amounts of ammonia in the laboratory air, Geophys. Res. Lett., 7, 974–976, 1980.

    Article  Google Scholar 

  • Heintzenberg, J., Size-segregated measurements of particulate elemental carbon and aerosol light absorption at remote Arctic locations, Atmos. Env., 16, 1461, 1469, 1982.

    Google Scholar 

  • Hoff, R. M., W. R. Leaitch, P. Fellin and L. A. Barrie, Mass size distributions of chemical constituents of the winter Arctic aerosol, J. Geophys. Res., 88, 10,947–10,956, 1983.

    Article  Google Scholar 

  • Hoff, R. M. and B. A. Trivett, Ground-based measurements of Arctic Haze made at Alert, N.W.T., Canada during the Arctic gas and aerosol sampling project, Geophys. Res. Lett., 11, 389–392, 1984.

    Article  Google Scholar 

  • Jaeschke, W., H. Georgii, H. Claude and H. Malewski, Contributions of H2S to the atmospheric sulfur cycle, Pageoph, 116, 465–475, 1978.

    Article  Google Scholar 

  • Joranger, E. and B. Ottar, Air pollution studies in the Norwegian Arctic, Geophys. Res. Lett., 11, 365–368, 1984.

    Article  Google Scholar 

  • Lovelock, J. E., J. Maggs and R. A. Rasmussen, Atmospheric dimethyl sulphide and the natural sulfur cycle, Nature, 237, 452–453, 1972.

    Article  Google Scholar 

  • Patterson, E. M., B. T. Marshall and K. A. Rahn, Radiative properties of the Arctic aerosol, Atmos. Env., 16, 1967–2977, 1982.

    Google Scholar 

  • Ono, A., K. Okada, K. Akaeda, On the validity of the vapor-deposited thin films of BaCl2 for the detection of SO4 in atmospheric particles, J. Met. Soc. Japan, 59, 417–422, 1981.

    Google Scholar 

  • Pewe, T. L., Quatenary geology of Alaska (Geological Survey Professional Paper 835), U.S. Gov’t. Printing Office, Washington, 145 pp., 2nd printing, 1977.

    Google Scholar 

  • Raatz, W. E. and G. E. Shaw, Long-range tropospheric transport of pollution aerosols into the Alaskan Arctic, J. Climate. App. Meteor., 1984.

    Google Scholar 

  • Radke, L. F., J. H. Lyons, P. A. Hogg, P. V. Hobbs, I. H. Baily, Airborne observations of Arctic aerosols. I: Characteristics of Arctic Haze, Geophys. Res. Lett., 11, 393–396, 1984.

    Article  Google Scholar 

  • Rahn, K. A. R. D. Borys and G. E. Shaw, The Asian source of Arctic haze bands, Nature, 268, 713–715, 1977.

    Article  Google Scholar 

  • Rahn, K. A. and R. J. McCaffrey, On the origin and transport of the winter Arctic aerosol, Ann. N.Y. Acad. Sci., 388, 486–503, 1980.

    Article  Google Scholar 

  • Roosen, R. G., R. J. Angione and C. H. Klemcke, Worldwide variations in atmospheric transmissions: Baseline results from Smithsonian Observations, Bull. Am. Meteor. Soc., 54, 307–316, 1973.

    Article  Google Scholar 

  • Sandalls, F. J. and S. A. Penkett, Measurements of carbonyl sulphide and carbon disulphide in the atmosphere, Atmos. Env., 11, 197–199, 1977.

    Article  Google Scholar 

  • Shaw, G. E. and G. Wendler, Atmospheric turbidity measurements at McCall Glacier in northern Alaska, Proceedings of the Atmospheric Radiation Conference, Ft. Collins, Colorado, August 7–9, 1972.

    Google Scholar 

  • Shaw, G. E., X-ray spectrometry of polar aerosols, Atmos. Environ., 17, 329–339, 1983

    Article  Google Scholar 

  • Sze, N. D. and M.K.W. Ko, Is CS2 a precursor for atmospheric COS? Nature, 278, 731–732, 1979.

    Article  Google Scholar 

  • Twomey, S., Comparison of constrained linear inversion and an iterative non-linear algorithm applied to the indirect estimation of particle size distributions, J. Comp. Phys., 18, 188–200, 1975.

    Article  Google Scholar 

  • Twomey, S., Atmospheric Aerosols, Elsevier Scientific Publishing Co., 301 pps, Amsterdam, 1977.

    Google Scholar 

  • Volz, F. E., Turbidity at Uppsala from 1909 to 1922 in Sjostroms solar radiation measurements, Suer Meteor. Hydrolog. Last Rpt No. 28, Stockholm, 1968.

    Google Scholar 

  • Went, F. W., On the nature of Aitken condensation nuclei, Tellus, 18, 549–556, 1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 D. Reidel Publishing Company

About this chapter

Cite this chapter

Shaw, G.E. (1986). Aerosols in Alaskan Air Masses. In: Ehhalt, D., Pearman, G., Galbally, I. (eds) Scientific Application of Baseline Observations of Atmospheric Composition (SABOAC). Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3909-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3909-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8235-8

  • Online ISBN: 978-94-009-3909-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics