Skip to main content

The Physical Principles Controlling the Remote Sensing Process

  • Chapter
Remote Sensing Applications in Meteorology and Climatology

Part of the book series: NATO ASI Series ((ASIC,volume 201))

Abstract

In this presentation, the physical principles controlling the reflection and emission of radiation from natural and from man-made surfaces will be considered. The interaction of the downwelling radiance field with the atmosphere will be considered, as will the interaction of the global irradiance field with the anisotropic reflectance, absorbtance and emissivity characteristics of clouds and of terrestrial surfaces. The interaction of the upwelling radiance field with the sensor will be considered. The impact of these factors and their interactions will be considered for the visible-reflective infrared part of the spectrμm (0.4 μm – 2.0 μm), for the mid-infrared region (3.5 μm – 4.1 μm) and for the thermal infrared regions (8 – 12 μm). The need for sensors capable of recording radiance with high signal-to-noise ratios in several different portions of the spectrum will be considered. The need for multiband sensors in order to discriminate cloud and land cover types will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauer, M.E., Biehl, L.L., Daughtry, C.S.T., Robinson, B.F., and Stoner, E.R., 1979, AgRISTARS Supporting Research, Final Report NAS9–15466, Volume 1.

    Google Scholar 

  • Chance, J.E., and LeMaster, E.W., 1977, Suits reflectance models for wheat and cotton: theoretical and experimental tests. Appl. Optics, 16, 407.

    Article  Google Scholar 

  • Chance, J.E., and LeMaster, E.W., 1978, Plant canopy light absorption model with application to wheat. Appl. Optics, 17, 2629.

    Google Scholar 

  • Colwell, J.E., 1974, Vegetation canopy reflectance. Remote Sensing Environ., 3, 175.

    Article  Google Scholar 

  • Coulson, K.L., 1966, Effects of reflection properties of natural surfaces in aerial reconnaissance. Appl. Optics, 5, 905.

    Article  Google Scholar 

  • Dave, J.V., 1978, Extensive data sets of the diffuse radiation in realistic atmospheric models with aerosols and common absorbing gases. Sol. Energy, 21, 361.

    Article  Google Scholar 

  • Dereniak, E.L. and Crowe, D.G., 1984. Optical Radiation Detectors. Wiley, New York.

    Google Scholar 

  • Duggin, M.J., 1974, On the natural limitations of target differentiation by means of spectral discrimination techniques, Proceedings of the Ninth International Symposium on Remote Sensing of the Environment, Ann Arbor, Michigan, pp. 499–516.

    Google Scholar 

  • Duggin, M.J., 1977, Likely effects of solar elevation on the quantification of changes in vegetation with maturity using sequential Landsat imagery. Appl. Optics, 16, 521.

    Article  Google Scholar 

  • Duggin, M.J., 1983, The effect of irradiation and reflectance varability on vegetation condition assessment, Int. J. Remote Sensing, 4, 601.

    Article  Google Scholar 

  • Duggin, M.J., 1985, Factors limiting the discrimination and quantification of terrestrial features, using remotely sensed radiance, Int. J. Remote Sensing, 6, 3.

    Article  Google Scholar 

  • Duggin, M.J., and Cunia, T., 1983, Ground reflectance measurement techniques: a comparison. Appl. Optics, 22, 3771.

    Article  Google Scholar 

  • Duggin, M.J. and Piwinski, D.J., 1984, Recorded radiance indices for vegetation monitoring using N0AA AVHRR data; atmospheric and other effects in multitemporal data sets, Applied Optics, 23, 2620.

    Article  Google Scholar 

  • Egbert, D.D., and Ulaby, F.T., 1972, Effects of angles on reflectivity. Photogramm. Engng., 38, 556.

    Google Scholar 

  • Gast, P.R., Jursa, A.S., Castelli, J., Basu, S., and Aarons, J., 1965, In Handbook of Geophysics and Space Environments, edited by S.L. Valley. (Cambridge: Air Force Research Laboratory), Ch. 16.

    Google Scholar 

  • Haque, M.S., 1986, M.S. thesis, State University of New York, Syracuse, N.Y.

    Google Scholar 

  • Itakura, Y., Tsutsumi, S. and Takagi, T., 1974, Statistical properties of the background noises for the atmospheric windows in the intermediate infrared region. Infrared Phys., 14, 10.

    Article  Google Scholar 

  • Jackson, R.D., 1981, Interactions between canopy geometry and thermal infrared measurements. Proceedings of the Conference on Signatures Spectrales D’objets en teledetection, Avignon, 8–11, September, g.II.5.291.

    Google Scholar 

  • Jamieson, J.A., 1961, Inference of two-dimensional Wiener spectra from one-dimensional measurements. Infrared Physics, 1, 133.

    Article  Google Scholar 

  • Jamieson, J.A., 1986, Infrared technology: advances 1975–84, challenges 1985–94. Optical Engineering, 25, 688.

    Google Scholar 

  • Jamieson, J.A., McFee, R.H., Plass, G.N., Grube, R.H. and Richards, R.G., 1965. Infrared Physics and Engineering, McGraw Hill, New York.

    Google Scholar 

  • Johnson, W.R., and Sestak, M.L., 1981, AgRISTARS Report NASA Sr-LI-04071; JSC-17127.

    Google Scholar 

  • Kaneko, T., and Engvall, J.L., 1977, View angle effect in Landsat imagery. Proceedings of the 11th International Symposium on Remote Sensing of the Environment, Ann Arbor, MI., pp. 945–951.

    Google Scholar 

  • Keyes, R.J. (ed.), 1980, Optical and infrared detectors. Springer-Verlag, Topics in Applied Physics, 19, New York.

    Google Scholar 

  • Kimes, D.S., 1981a, Azimuthal radiometric temperature measurements of wheat canopies. Appl. Optics, 20, 1119.

    Article  Google Scholar 

  • Kimes, D.S., 1981b, Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques. I.E.E.E. Trans. Geosci. Remote Sensing, 19, 85.

    Article  Google Scholar 

  • Kimes, D.S., 1983, Remote sensing of row crops structure and component temperatures using directional radiometric temperatures and inversion techniques. Remote Sensing Environ., 13, 33.

    Article  Google Scholar 

  • Kimes, D.S., Idso, S.B., Pinter, P.J., Reginato, R.J., and Jackson, R.D., 1980, View angle effects in the radiometric measurements of plant canopy temperatures. Remote Sensing Environ., 10, 273.

    Article  Google Scholar 

  • Kimes, D.S. and Kirchner, J.A., 1983, Directional radiometric measurements and row-crop temperatures. Int. J. Remote Sensing, 4, 299.

    Article  Google Scholar 

  • Kirchner, J.A., and Schnetzler, C.C., 1981, Simulated directional radiance of vegetation from satellite platforms. Int. J. Remote Sensing, 2, 253.

    Article  Google Scholar 

  • Kirschner, J.A., Youkhana, S., and Smith, J.A., 1982, Influence of sky radiance distribution on the ratio technique for estimating bidirectional reflectance. Photogramm. Engng. Remote Sensing, 48, 955.

    Google Scholar 

  • Kollenkark, J.C., Vanderbilt, V.C., Daughtry, C.S.T., and Bauer, M.E., 1982, Influence of solar illumination angle on soybean canopy reflectance. Appl. Optics, 21, 1179.

    Article  Google Scholar 

  • Kowalik, W.S., 1981, Ph.D. thesis, Stanford University, 363 pp.

    Google Scholar 

  • Kriebel, K.T., 1976, On the variability of the reflected radiation field due to differing distributions of the irradiation. Remote Sensing Environ., 4, 257.

    Article  Google Scholar 

  • Kriebel, K.T., 1977, Reflection properties of vegetated surfaces: tables of measured spectral biconical reflectance factors. Universitat munchen-Meterorologisches Inst. Wissenschaftliche Mietteilung, Nr. 29.

    Google Scholar 

  • Markhan, B.L. and Barker, J.L., 1985, Spectral characteristics of the Landsat thematic mapper sensors. NASA Conference Publication 2355, Vol. 2, pp. 235–276.

    Google Scholar 

  • Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsbert, J.W. and Limperis, T., 1977, Geometrical consideration and nomenclature for reflectance. Report No. NBSMN-160, NBS Monograph 160, Institute for Basic Standards, U.S. Dept. Commerce, Washington, D.C.

    Google Scholar 

  • Schnetzler, C.C., 1981, Effect of sun and sensor geometry, canopy structure and density and atmospheric conditions on the spectral response of vegetation, with particular emphasis on across-track pointing. Proceedings of the Conference on Signatures Spectrales d’objets en teledetection, Avignon, 8–11 September, pp. 509–520.

    Google Scholar 

  • Slater, P.N., 1980, Remote Sensing: Optics and Optical Systems, Advanced Book Program (Reading, Mass.:Addison Wesley), pp. 211 et. sec.

    Google Scholar 

  • Slater, P.N., 1979, A re-examination of the Landsat MSS, Photogramm. Engng. Remote Sensing 45, 1479.

    Google Scholar 

  • Smith, J.A., 1983, In Handbook of Remote Sensing, 2nd Edition, American Society for Photogrammetry.

    Google Scholar 

  • Suits, G.H., 1972a, The calculation of the directional reflectance for a vegetative canopy. Remote Sensing Environ., 2, 117.

    Article  Google Scholar 

  • Suits, G.H., 1972b, The causes of azimuthal variations in directional reflectance of vegetative canopies. Remote Sensing Environ., 2, 175.

    Article  Google Scholar 

  • Suits, G.H., and Safir, G., 1972, Verification of a reflectance model for mature corn with applications to corn blight detections. Remote Sensing Environ., 2, 183.

    Article  Google Scholar 

  • Turner, R.E., 1978, Elimination of atmospheric effects from sensor data. Proceedings of the 12th International Symposium on Remote Sensing of the Environment, Ann Arbor, MI., pp. 783–793.

    Google Scholar 

  • Wolfe, W.L., and Zissis, G.J., 1978, The Infrared Handbook (Environmental Research Institute of Michigan).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Duggin, M.J. (1987). The Physical Principles Controlling the Remote Sensing Process. In: Vaughan, R.A. (eds) Remote Sensing Applications in Meteorology and Climatology. NATO ASI Series, vol 201. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3881-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3881-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8225-9

  • Online ISBN: 978-94-009-3881-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics