Advertisement

Interacting Particles, I: Classical and Quantum Clustering

  • Walter T. GrandyJr.
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 19)

Abstract

For all the various models considered up to this point the basic interactions between and among the constituent particles were essentially ignored, and for good reasons. First of all, the resulting simplification in the many-body problem permitted a detailed explication of the major physical features of these systems, and led to the development of some powerful mathematical techniques which will always be useful. Secondly, the resulting physical descriptions in terms of free-particle models are often quite viable in themselves and provide significant insight into the systems and processes they model. This latter situation arises because the particle-particle interactions are actually irrelevant to those macroscopic properties we choose to measure in these cases.

Keywords

Hard Sphere Cluster Coefficient Quantum Correction Hard Core Virial Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and I. A. Stegun: 1964,Handbook of Mathematical Functions, AMS 55, Natl. Bur. of Stds., Washington.zbMATHGoogle Scholar
  2. Adhikari, S.K., and R.D. Amado: 1971, ‘Low-Temperature Behavior of the Quantum Cluster Co-efficients’Phys. Rev. Letters 27 485.ADSCrossRefGoogle Scholar
  3. Amdur, I., and E.A. Mason: 1958, ‘Properties of Gases at Very High Temperatures’,Phys. Fluids 1, 370.MathSciNetADSCrossRefGoogle Scholar
  4. Arf, C., K. Imre, and E. Ozizmir: 1965, ‘On the Algebraic Structure of the Cluster Expansion inStatistical Mechanics’, J.Math. Phys. 6, 1179.MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. Barker, J.A., P.J. Leonard, and A. Pompe: 1966, ‘Fifth Virial Coefficients’,J. Chem. Phys. 44, 4206.ADSCrossRefGoogle Scholar
  6. Barker, J.A., and J.J. Monaghan: 1962a, ‘Virial Coefficients for Square-Well Potentials’,J. Chem. Phys. 36, 2558.ADSCrossRefGoogle Scholar
  7. Barker, J.A., and J.J. Monaghan: 1962b, ‘Fourth Virial Coefficients for the 12–6 Potential’, J.Chem. Phys. 36 2564.ADSCrossRefGoogle Scholar
  8. Barker, J.A., and J.J. Monaghan: 1966, ‘Comment on a Letter of Katsura’,J. Chem. Phys. 45, 3482.ADSCrossRefGoogle Scholar
  9. Baumgartl, B.J.: 1967, ‘Second and Third Virial Coefficients of a Quantum Gas from Two-ParticleScattering Amplitude’,Z. Phys. 198 148.ADSCrossRefGoogle Scholar
  10. Beth, E., and G.E. Uhlenbeck: 1937, ‘The Quantum Theory of the Non-Ideal Gas.II. Behavior atLow Temperatures’,Physic a 4 915.ADSGoogle Scholar
  11. Boltzmann, L.: 1899, ‘Über die Zustandgleichung v.d. Waals’,Versl. Acad. Wet. Amsterdam 7, 477.Google Scholar
  12. Boyd, M., S. Larsen, and J.E. Kilpatrick: 1966, ‘Exchange and Direct Second Virial Coefficientsfor Hard Spheres’,J. Chem Phys. 45 499.ADSCrossRefGoogle Scholar
  13. Bruch, L.W.: 1967, ‘Second Virial Coefficient for the Exponential Repulsive Potential’,Phys. Fluids 10, 2531.ADSCrossRefGoogle Scholar
  14. Bruch, L.W.: 1973a, ‘High Temperature Limit of the Exchange Third Virial Coefficient for HardSpheres’,Prog. Theor. Phys. 50, 1537.ADSCrossRefGoogle Scholar
  15. Bruch, L.W.: 1973a, ‘High Temperature Limit of the Exchange Third Virial Coefficient for HardSpheres’,Prog. Theor. Phys. 50, 1835.ADSCrossRefGoogle Scholar
  16. Brydges, D.C.: 1986, ‘Convergence of Mayer Expansions’,J. Stat. Phys. 42 425.MathSciNetADSCrossRefGoogle Scholar
  17. Brydges, D.C., and P. Federbush: 1978, ‘A New Form of the Mayer Expansion in Statistical Mechanics’,J. Math. Phys. 19 2064.MathSciNetADSCrossRefGoogle Scholar
  18. Clausius, R.: 1870, ‘Über einen auf die Warme andwendbaren mechanischen Satz’,Ann. d. Phys. 141 124.ADSGoogle Scholar
  19. D’Arruda, J. J.: 1973, ‘High-Temperature Quantum Corrections to the Second Virial Coefficient for a Hard-Core- Plus-Attractive-Well-Potential Model’,Phys. Rev. A 7 820.ADSCrossRefGoogle Scholar
  20. D’Arruda, J.J., and R.N. Hill: 1970, ‘Quantum Corrections to the Second Virial Coefficient with an Application to the Hard-Core-Plus-Square-Well Potential at High Temperatures’,Phys. Rev A, 1. 1791.ADSCrossRefGoogle Scholar
  21. Dashen, R., S.-K. Ma, and H.J. Bernstein: 1969, ‘S-Matrix Formulation of Statistical Mechanics’,Phys. Rev. 187, 345.ADSzbMATHCrossRefGoogle Scholar
  22. de Boer, J.: 1940, ‘Contribution to the Theory of Compressed Gases’,Ph.D thesis Amsterdam Univ. (unpublished).Google Scholar
  23. de Boer, J., and A. Michels: 1938, ‘Contribution to the Quantum-Mechanical Theory of the Equation of State and the Law of Corresponding States. Determination of the Law of Force of Helium’,Physica5, 945.ADSzbMATHCrossRefGoogle Scholar
  24. de Boer, J., and A. Michels: 1939, ‘Quantum-Mechanical Calculation of the Second Virial- Coefficient of Helium at Low Temperatures’,Physica 6, 409.ADSzbMATHCrossRefGoogle Scholar
  25. de Boer, J., J. van Kranendonk, and K. Compaan: 1950, ‘The Equation of State of Gaseous He3’,Physic a 16, 545.ADSzbMATHGoogle Scholar
  26. De Witt, H.E.: 1962, ‘Analytic Properties of the Quantum Corrections to the Second Virial Coefficient’,J. Math. Phys. 3 1003.ADSCrossRefGoogle Scholar
  27. Douslin, D.R., R.H. Harrison, R.T. Moore, and J.P. McCullough: 1964, ‘P-V-T Relations for Methane’,J. Chem. Engng. Data 9, 358.CrossRefGoogle Scholar
  28. Dymond, J.H., and E.B. Smith: 1980,The Virial Coefficients of Pure Gases and Mixtures Clarendon Press, Oxford.Google Scholar
  29. Edwards, J.C.: 1970, ‘Perturbation-Theory Approach to the First Quantum Correction to the Square-Well High-Temperature Classical Second Virial Coefficient’,Phys. Rev. A 2, 1599.ADSCrossRefGoogle Scholar
  30. Feinberg, M.J., A.G. DeRocco: 1964, ‘Intermolecular Forces: The Triangle Well and Some Comparisons with the Square Well and Lennard-Jones’,J. Chem. Phys. 41 3439.ADSCrossRefGoogle Scholar
  31. Fosdick, L.D., and H.F. Jordan: 1966, ‘Path Integral Calculation of the Two-Particle Slater Sum for He4’,Phys. Rev. 143 58.ADSCrossRefGoogle Scholar
  32. Fré, P.: 1977, ‘The 5-Matrix Formulation of the Cluster Expansion in Statistical Mechanics’,Fort, d. Phys. 25, 579.CrossRefGoogle Scholar
  33. Frisch, H.L., and E. Helfand: 1960, ‘Conditions Imposed by Gross Properties on the Intermolecular Potential’,J. Chem. Phys. 32 269.MathSciNetADSCrossRefGoogle Scholar
  34. Gibson, W.G.: 1970, ‘Quantum-Mechanical Second Virial Coefficient at High Temperatures’,Phys. Rev. A2 996.ADSGoogle Scholar
  35. Gibson, W.G.: 1972a, ‘Quantum Corrections to the Equation of State for Nonanalytic Potentials’,Phys. Rev. A5, 862.ADSGoogle Scholar
  36. Gibson, W.G.: 1972b, ‘Low-Temperature Expansion of the Third-Cluster Coefficient of a Quantum Gas’,Phys. Rev.A6, 2469.ADSGoogle Scholar
  37. Gibson, W.G.: 1973, ‘Quantum Corrections to the Virial Coefficients for Potentials with Hard Cores’,Phys. Rev. A7 822.ADSGoogle Scholar
  38. Goldberger, M.L., and A.N. Adams: 1952, ‘The Configurational Distribution Function in Quantum- Statistical Mechanics’,J. Chem. Phys. 20, 240.MathSciNetADSCrossRefGoogle Scholar
  39. Graben, H.W., and R.D. Present: 1964, ‘Third Virial Coefficient for the Sutherland (∞,v) Potential’, Rev.Mod. Phys. 36, 1025.ADSCrossRefGoogle Scholar
  40. Gropper, L.: 1937, ‘Connection Between the Second Virial Coefficient and the Phases of Collision Theory’,Phys. Rev. 51 1108.ADSCrossRefGoogle Scholar
  41. Guggenheim, E.A.: 1957,Thermodynamics North-Holland, Amsterdam.zbMATHGoogle Scholar
  42. Handelsman, R.A., andJ.B. Keller: 1966, ‘Quantum-Mechanical Second Virial Coefficient of a Hard-Sphere Gas at High Temperature’,Phys. Rev. 148 94.ADSCrossRefGoogle Scholar
  43. Happel, H.: 1906, ‘Zur Theorie und Prufung der Zustandgleichung’,Ann. d. Phys. 21, 342.ADSCrossRefGoogle Scholar
  44. Hemmer, P.C.: 1968, ‘The Hard Core Quantum Gas at High Temperatures’,Phys. Letters 27A 377.ADSGoogle Scholar
  45. Hemmer, P.C., andK.J. Mork: 1967, ‘Quantum-Mechanical Second Virial Coefficient of a Hard- Sphere Gas at High Temperatures’,Phys. Rev. 158 114.ADSCrossRefGoogle Scholar
  46. Henderson, D., and S.G. Davison: 1965, ‘Quantum Corrections to the Equation of State for a Steep Repulsive Potential’,Proc. Natl. Acad. Sci. (U.S.A.) 54, 21.MathSciNetADSCrossRefGoogle Scholar
  47. Hill, R.N.: 1968, ‘Quantum Corrections to the Second Virial Coefficient at High Temperatures’, J.Math. Phys. 9, 1534.ADSCrossRefGoogle Scholar
  48. Hill, R.N.: 1974, ‘High-Temperature Exchange Third Virial Coefficient for Hard Spheres via an Asymptotic Method for Path Integrals’ J.Stat. Phys. 11 207.ADSCrossRefGoogle Scholar
  49. Hirschfelder, J.O., C.F. Curtiss, and R.B. Bird: 1954,Molecular Theory of Gases and Liquids Wiley, New York.zbMATHGoogle Scholar
  50. Holborn, L., and J. Otto: 1925:, ‘ÜCber die Isothermen einiger Gases zwischen +400 ° und -183°Z. Phys. 33, 1.ADSCrossRefGoogle Scholar
  51. Jancovici, B.: 1969a, ‘Quantum-Mechanical Equation of State of a Hard-Sphere Gas at High Temperatures’,Phys. Rev. 178, 295.ADSCrossRefGoogle Scholar
  52. Jancovici, B.: 1969b, ‘Quantum-Mechanical Equation of State of a Hard-Sphere Gas at High Temperatures. II’,Phys. Rev. 184 119.ADSCrossRefGoogle Scholar
  53. Jancovici, B., and S.P. Merkuriev: 1975, ‘Quantum- Mechanical Third Virial Coefficient of a Hard- Sphere Gas at High Temperatures’,Phys. Rev. A 12 2610.ADSCrossRefGoogle Scholar
  54. Jeans, J.: 1925,Dynamical Theory of Gases Cambridge Univ. Press, Cambridge.zbMATHGoogle Scholar
  55. Kahn, B.: 1938, ‘On the Theory of the Equation of State’,Ph.D. thesis, Utrecht. [North-Holland, Amsterdam, 1938.]Google Scholar
  56. Kahn, B., and G.E. Uhlenbeck: 1938, ‘On the Theory of Condensation’,Physic a 5, 399.ADSGoogle Scholar
  57. Kammerlingh Onnes, H.: 1902, ‘Expression of the Equation of State of Gases and Liquids by Means of Series’,Proc. Kon. Ned. Akad. Wet. (Amsterdam) 4 125.ADSGoogle Scholar
  58. Keesom, W.H.: 1912, ‘On the Deduction from Boltzmann’s Entropy Principle of the Second Virial coefficient for Material particles (in the limit Rigid Spheres of Central Symmetry) Which Exert Central Forces Upon Each Other and for Rigid Spheres of Central Symmetry Containing an Electric Doublet at their Centre’,Comm. Phys. Lab. Leiden, Suppl. 24B 32.Google Scholar
  59. Keesom, W.H.: 1942,Helium Elsevier, Amsterdam.Google Scholar
  60. Kihara, T.: 1943., ‘The Equation of State of Gases and the Critical State (in Japanese’,Nippon- Sugaku-Buturigakukaisi 17 11.Google Scholar
  61. Kihara, T.: 1948, ‘Determination of Intermolecular Forces from the Equation of State of Gases’, J.Phys. Soc. (Japan) 3, 265.ADSCrossRefGoogle Scholar
  62. Kihara, T.: 1951a, ‘Determination of the Intermolecular Forces from the Equation of State of Gases’, J.Phys. Soc. (Japan) 6, 184.MathSciNetADSCrossRefGoogle Scholar
  63. Kihara, T.: 1951b, ‘The Second Virial Coefficient of Non-Spherical Molecules’,J. Phys. Soc. (Japan) 6, 289.MathSciNetADSCrossRefGoogle Scholar
  64. Kihara, T.: 1953a, ‘On Isihara-Hayashida’s Theory of the Second Virial Coefficient for Rigid, Convex Molecules’,J. Phys. Soc. (Japan) 8, 686.ADSCrossRefGoogle Scholar
  65. Kihara, T.: 1953b, ‘Virial Coefficients and Models of Molecules in Gases’,Rev. Mod. Phys. 25, 831.ADSzbMATHCrossRefGoogle Scholar
  66. Kihara, T., and T. Hikita: 1953, in FourthSymposium on Combustion Williams and Wilkins Co., Baltimore, p.458.Google Scholar
  67. Kihara, T., Y. Midzuno, and T. Shizume: 1955, ‘Virial Coefficients and Intermolecular Potential of Helium’,J. Phys. Soc. (Japan) 10 249.ADSCrossRefGoogle Scholar
  68. Kilpatrick, J.E., W.E. Keller, E.F. Hammel, and N. Metropolis: 1954, ‘Second Virial Coefficients of He3 and He4’,Phys. Rev. 94 1103.ADSzbMATHCrossRefGoogle Scholar
  69. Kilpatrick, J.E., W.E. Keller, and E.F. Hammel: 1955, ‘Second Virial Coefficients of Helium from the Exp-Six Potential’,Phys. Rev. 97 9.ADSCrossRefGoogle Scholar
  70. Kilpatrick, J.E., and D.I. Ford: 1969, ‘The Virial Equation of State: Its Inversion and Other Manipulations’,Am. J. Phys. 37, 881.ADSCrossRefGoogle Scholar
  71. Kirkwood, J.G.: 1933, ‘Quantum Statistics of Almost Classical Assemblies’,Phys. Rev. 44 31. Kramers, H.A.: 1944, ‘Leiden Lectures’.ADSzbMATHCrossRefGoogle Scholar
  72. Larsen, S.Y.: 1963, ‘Quantum Mechanical Calculation of the Third Virial Coefficient of He4’,Phys. Rev. 130 1426.ADSzbMATHCrossRefGoogle Scholar
  73. Larsen, S.Y., J. Kilpatrick, E. Lieb, and H. Jordan: 1965, ‘Suppression at High Temperature of Effects due to Statistics in the Second Virial Coefficient of a Real Gas’,Phys. Rev. 140 A129.ADSCrossRefGoogle Scholar
  74. Larsen, S.Y., and P.L. Mascheroni: 1970, ‘Quantum-Mechanical Third Virial Coefficient and Three- Body Phase Shifts’,Phys. Rev. A 2 1018.ADSCrossRefGoogle Scholar
  75. Lebowitz, J.L., and O. Penrose: 1964, ‘Convergence of Virial Expansions’,J. Math. Phys. 5, 841.MathSciNetADSCrossRefGoogle Scholar
  76. Lee, T.D., and C.N. Yang: 1959a, ‘Many-Body Problem in Quantum Statistical Mechanics.I. General Formulation’,Phys. Rev. 113 1165.MathSciNetADSzbMATHCrossRefGoogle Scholar
  77. Lee, T.D., and C.N. Yang: 1959b, ‘Many-Body Problem in Quantum Statistical Mechanics.II. Virial Expansion for Hard-Sphere Gas’,Phys. Rev. 116 25.MathSciNetADSzbMATHCrossRefGoogle Scholar
  78. Lee, T.D., and C.N. Yang: 1960a, ‘Many-Body Problem in Quantum Statistical Mechanics.III. Zero-Temperature Limit for Dilute Hard Spheres’,Phys. Rev. 117 12.MathSciNetADSCrossRefGoogle Scholar
  79. Lee, T.D., and C.N. Yang: 1960b, ‘Many-Body Problem in Quantum Statistical Mechanics.IV. Formulation in Terms of Average Occupation Number in Momentum Space’,Phys. Rev 117 22.MathSciNetADSCrossRefGoogle Scholar
  80. Lee, T.D., and C.N. Yang: 1960c, ‘Many-Body Problem in Quantum Statistical Mechanics.V. Degenerate Phase in Bose-Einstein Condensation’,Phys. Rev. 117 897.MathSciNetADSCrossRefGoogle Scholar
  81. Lennard-Jones, J.E.: 1924, ‘On the Determination of Molecular Fields.II. From the Equation of State of a Gas’,Proc. Roy. Soc. (London) A106 463.ADSGoogle Scholar
  82. Lennard-Jones, J.E.: 1931, ‘Cohesion’,Proc. Phys. Soc. (London) A43 461.ADSCrossRefGoogle Scholar
  83. Lieb, E.: 1966, ‘Quantum Mechanical Extension of the Lebowitz-Penrose Theorem on the van der Waals Theory’, J.Math. Phys. 7, 1016.MathSciNetADSCrossRefGoogle Scholar
  84. Lieb, E.: 1967, ‘Calculation of Exchange Second Virial Coefficient of a Hard-Sphere Gas by Path Integrals’, J.Math. Phys. 8, 43.ADSCrossRefGoogle Scholar
  85. London, F.: 1954,Superfluids, Vol.11 Wiley, New York, pp. 18–30.Google Scholar
  86. Majumdar, R.: 1929, ‘Equation of State’,Bull. Calcutta Math. Soc. 21 107.zbMATHGoogle Scholar
  87. Margenau, H., and N.R. Kestner: 1969,Theory of Intermolecular Forces Pergamon, New York.Google Scholar
  88. Mascheroni, P.L.: 1970, ‘Low-Temperature Behavior for the Quantum Virial Coefficients’,Phys. Rev. Letters 25, 726.ADSCrossRefGoogle Scholar
  89. Mason, E.A., and T.H. Spurling: 1969,The Virial Equation of State Pergamon, Oxford.Google Scholar
  90. Mayer, J.E., and M.G. Mayer: 1940,Statistical Mechanics Wiley, New York.zbMATHGoogle Scholar
  91. McGinnies, R.T., and L. Jansen: 1956, ‘Validity of the Assumption of Two-Body Interactions in Molecular Physics.I.’,Phys. Rev. 101 1301.ADSCrossRefGoogle Scholar
  92. Michels, A., Hub. Wijker, and H.K. Wijker: 1949, ‘Isotherms of Argon Between 0°C and 150 °C and Pressures Up to 2 900 Atmospheres’,Physica , 15 627.ADSCrossRefGoogle Scholar
  93. Michels, A., A. Visser, R.J. Lunbeck, and G.J. Wolkers: 1952, ‘Isotherms and Thermodynamic Functions of Methyl Fluoride at Temperatures Between 0 °C and 150 °C and at Pressures Up to 150 Atmospheres’,Physica 18, 114.ADSCrossRefGoogle Scholar
  94. Michels, A., J.M. Levelt, and W. de Graff: 1958, ‘Compressibility Isotherms of Argon at Temperatures Between -25 °C and -155 °C, and at Densities Up to 640 Amagat’,Physica 24, 659.ADSCrossRefGoogle Scholar
  95. Mie, G.: 1903, ‘Zur kinetischen Theorie der einatomigen Korper’,Ann. d. Phys. 11 657. Mohling, F.: 1963, ‘Quantum Corrections to the Second Virial Coefficient for Helium at HighTemperatures’,Phys. Fluids 6 1097.Google Scholar
  96. Mohling, F., and W.T. Grandy, Jr.: 1965, ‘Quantum Statistics of Multicomponent Systems’, J.Google Scholar
  97. Math. Phys. 6, 348.Google Scholar
  98. Muir, T.: 1960, ATreatise on the Theory of Determinants, Dover, New York. Nagamiya, T.: 1940a, ‘Statistical Mechanics of One-Dimensional Substances, I.’,Proc. Phys.-Math. Soc. Japan 22, 705.Google Scholar
  99. Nagamiya, T.: 1940b, ‘Statistical Mechanics of One-Dimensional Substances, II.’,Proc. Phys.-Math. Soc. Japan 22, 1034.MathSciNetzbMATHGoogle Scholar
  100. Nijboer, B.R.A., and L. Van Hove: 1952, ‘Radial Distribution Function of a Gas of Hard Spheresand the Superposition Approximation’,Phys. Rev. 85 777.ADSzbMATHCrossRefGoogle Scholar
  101. Nijboer, B.R.A., and F. Fieschi: 1953, ‘On the Radial Distribution Function of a Compressed Gasof Rigid Spheres’,Physica 19 545.ADSzbMATHCrossRefGoogle Scholar
  102. Nilsen, T.S.: 1969a, ‘Quantum-Mechanical Second Virial Coefficient of a Hard-Sphere Gas at HighTemperatures’,Phys. Rev. 51 4675.Google Scholar
  103. Nilsen, T.S.: 1969b, ‘Quantum Corrections to the Square-Well Second Virial Coefficient’,Phys. Rev. 186 262.ADSCrossRefGoogle Scholar
  104. Opfer, J.E., K. Luszczynski, and R.E. Norberg: 1965, ‘Nuclear Magnetic Susceptibility of He3Vapor’,Phys. Rev. 140 A100.ADSCrossRefGoogle Scholar
  105. Osborn, T.A., and T.Y. Tsang: 1976, ‘A Quantum Theory of Higher Virial Coefficients’,Ann. Phys. (N.Y.) 101 119.MathSciNetADSCrossRefGoogle Scholar
  106. Pais, A., and G.E. Uhlenbeck: 1959, ‘On the Quantum Theory of the Third Virial Coefficient’,Phys. Rev. 116 250.ADSzbMATHCrossRefGoogle Scholar
  107. Penrose, O.: 1963, ‘Convergence of Fugacity Expansions for Fluids and Lattice Gases’, J.Math Phys., 4. 1312.MathSciNetADSzbMATHCrossRefGoogle Scholar
  108. Ree, F.H., and W.G. Hoover: 1964, ‘Fifth and Sixth Virial Coefficients for Hard Spheres and HardDisks’, J.Chem. Phys. 40, 939.MathSciNetADSCrossRefGoogle Scholar
  109. Ree, F.H., and W.G. Hoover: 1967, ‘Seventh Virial Coefficients for Hard Spheres and Hard Disks’,J.Chem. Phys. 46, 4181.Google Scholar
  110. Reed, T.M., and K.E. Gubbins: 1973,Applied Statistical Mechanics, McGraw-Hill, New York, Chap.4.Google Scholar
  111. Reiner, A.S.: 1966, ‘Application of Faddeev Techniques to the Quantum Theory of the Third VirialCoefficient’,Phys. Rev. 151 170.MathSciNetADSCrossRefGoogle Scholar
  112. Rice, W.E., and J.O. Hirschfelder: 1954, ‘Second Virial Coefficients of Gases Obeying a ModifiedBuckingham (Exp-Six) Potential’,J. Chem. Phys. 22, 187.ADSCrossRefGoogle Scholar
  113. Rosen, P.: 1953, ‘The Nonadditivity of the Repulsive Potential of Helium’,J. Chem. Phys. 21, 1007.ADSCrossRefGoogle Scholar
  114. Rowlinson, J.S.: 1964a, ‘An Equation of State of Gases at High Temperatures and Densities’,Mol. Phys. 7, 349.MathSciNetADSCrossRefGoogle Scholar
  115. Rowlinson, J.S.: 1964b, ‘The Statistical Mechanics of Systems with Steep Intermolecular Potentials’,Mol. Phys. 8, 107.ADSCrossRefGoogle Scholar
  116. Ruelle, D.: 1969,Statistical Mechanics Benjamin, New York.zbMATHGoogle Scholar
  117. Sherwood, A.E., and J.M. Prausnitz: 1964a, ‘Third Virial Coefficient for the Kihara, Exp-6, andSquare-Well Potentials’,J. Chem. Phys. 41 413.ADSCrossRefGoogle Scholar
  118. Sherwood, A.E., and J.M. Prausnitz: 1964b, ‘Intermolecular Potential Functions and the Secondand Third Virial Coefficients’,J. Chem. Phys. 41 429.ADSCrossRefGoogle Scholar
  119. Sherwood, A.E., and E.A. Mason: 1965, ‘Virial Coefficients for the Exponential Repulsive Potential’,Phys. Fluids 8, 1577.ADSCrossRefGoogle Scholar
  120. Sherwood, A.E., A.G. DeRocco, and E.A. Mason: 1966, ‘Nonadditivity of Intermolecular Forces:Effects on the Third Virial Coefficient’,J. Chem. Phys. 44 2984.ADSCrossRefGoogle Scholar
  121. Siegert, A.J.F.: 1952, ‘Note on the Configuration Probabilities’,J.Chem. Phys. 20 572.ADSCrossRefGoogle Scholar
  122. Smith, R.A.: 1974, ‘Density Expansion of the Magnetic Susceptibility’,Ann. Phys. (N.Y.) 83 245.ADSCrossRefGoogle Scholar
  123. Sutherland, W.: 1893, ‘The Viscosity of Gases and Molecular Force’,Phil. Mag. 36 507.Google Scholar
  124. Taylor, J.R.: 1972,Scattering Theory Wiley, New York.Google Scholar
  125. Theumann, A.: 1970, ‘Quantum Corrections to the Second Virial Coefficient for a Square-WellPotential’,J. Math. Phys. 11 1772.ADSCrossRefGoogle Scholar
  126. Uhlenbeck, G.E., and E. Beth: 1936, ‘The Quantum Theory of the Non-Ideal Gas.I. Deviationsfrom the Classical Theory’,Physica 3, 729.zbMATHCrossRefGoogle Scholar
  127. Ursell, H.D.: 1927, ‘The Evaluation of Gibbs‘ Phase Integral for Imperfect Gases’,Proc. Camb. Phil. Soc. 23, 685.MathSciNetADSzbMATHCrossRefGoogle Scholar
  128. van der Waals, J.D.: 1873, ‘Over de continuiteit van den gas-en vloeisstoftoestand’,Ph.D thesis Leiden (unpublished).Google Scholar
  129. van Laar, J. J.: 1899, ‘Calculation of the Second Correction to the Quantityb of the Equation ofCondition of van der Waals’,Proc. Roy. Acad. Sei. Amsterdam 1, 273.Google Scholar
  130. White, D., T. Rubin, P. Camky, and H.L. Johnston: 1960, ‘The Virial Coefficients of Helium from20 to 300 °K’,J. Phys. Chem. 64 1607.CrossRefGoogle Scholar
  131. Widom, B.: 1954, ‘The Virial Series of the Ideal Bose-Einstein Gas’,Phys. Rev. 96 16.MathSciNetADSzbMATHCrossRefGoogle Scholar
  132. Wigner, E.P.: 1932, ‘On the Quantum Correction for Thermodynamic Equilibrium’,Phys. Rev. 40 749.ADSzbMATHCrossRefGoogle Scholar
  133. Yntema, J.L., and W.G. Schneider: 1950a, ‘Compressibility of Gases at High Temperatures.III. The Second Virial coefficient of Helium in the Temperature Range 600 °C to 1 200 °C’,J. Chem. Phys. 18 641.ADSCrossRefGoogle Scholar
  134. Yntema, J.L., and W.G. Schneider: 1950b, ‘On the Intermolecular Potential of Helium’,J. Chem. Phys. 18, 646.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Walter T. GrandyJr.
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WyomingUSA

Personalised recommendations