External Fields

  • Walter T. GrandyJr.
Part of the Fundamental Theories of Physics book series (FTPH, volume 19)


In this chapter we shall take the first step toward introducing interactions into the many body system. The study of particle-particle interactions will be deferred until the next chapter, while here we investigate some aspects of particle-field interactions. Essentially, the model is that of otherwise-free particles in the presence of external fields. Application of such fields often connotes a scenario in which the system is driven from equilibrium. This is certainly the case for time-dependent perturbing fields, but their study will not be taken up until Volume II. Here the system is presumed to remain in thermal equilibrium.


Partition Function External Field Landau Level Uniform Magnetic Field Oscillatory Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and I.A. Stegun (eds.): 1964, Handbook of Mathematical Functions, AMS 55,Natl. Bur. of Stds., WashingtonzbMATHGoogle Scholar
  2. Baierlein, R.: 1971, Atoms and Information Theory, Freeman, San Francisco.Google Scholar
  3. Bardeen, J., L. Cooper, and J. Schrieffer: 1957, ‘Theory of Superconductivity’, Phys. Rev. 108, 1175.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Bjorken, J.D., and S.D. Drell: 1964, Relativistic Quantum Mechanics, McGraw-Hill, New York.Google Scholar
  5. Bohr, N.:1911, ‘Studier over metallernes elektrontheori’, Ph.D thesis, Copenhagen (unpublished).Google Scholar
  6. Canuto, V., and H.Y. Chiu: 1972, ‘Intense Magnetic Fields in Astrophysics’, in H.Y. Chiu and A. Muriel (eds.),Stellar Evolution, M.I.T. Press, Cambridge, MA, Chap.21.Google Scholar
  7. Chudnovsky, E.M.: 1981, ‘Magnetic Susceptibility of Relativistic Fermi Gas’, J. Phys. A: Math. Gen. 14, 2091.ADSCrossRefGoogle Scholar
  8. Darwin, C.G.: 1930, ‘The Diamagnetism of the Free Electron’, Proc. Camb. Phil. Soc. 27, 86.ADSCrossRefGoogle Scholar
  9. de Haas, W. J., and P.M. van Alphen: 1930, ‘The Dependence of the Susceptibility of DiamagneticMetals on the Field’, Proc. Acad. Amsterdam 33, 680, 1106.Google Scholar
  10. de Haas, W.J., and P.M. van Alphen: 1932, ‘The Dependence of the Susceptibility of BismuthSingle Crystals upon the Field’, Proc. Acad. Amsterdam 35, 454.Google Scholar
  11. Delsante, A.E., and N.E. Frankel: 1979, ‘Relativistic Paramagnetism: Quantum Statistics’, Phys. Rev. D 20, 1795.ADSCrossRefGoogle Scholar
  12. Erdélyi, A. (ed.): 1953, Higher Transcendental Functions, Vol.1, McGraw-Hill, New York, p.32.Google Scholar
  13. Erdélyi, A. (ed.): 1954, Table of Integral Transforms, Vol.1, McGraw-Hill, New York, p.312.Google Scholar
  14. Evans, R.: 1979, ‘The Nature of the Liquid-Vapour Interface and Other Topics in the StatisticalMechanics of Non-Uniform Classical Fluids’, Adv. Physics 28, 143.ADSCrossRefGoogle Scholar
  15. Felderhof, B.U., and S.P. Raval: 1975, ‘Diamagnetism of a Confined Electron Gas’, Physica 82a, 151.MathSciNetADSGoogle Scholar
  16. Fisher, M.E.: 1964, ‘The Free Energy of a Macroscopic System’, Arch. Rati. Mech. Anal. 17, 377.Google Scholar
  17. Frankel, N.E., G.I. Opat, and J.J. Spitzer: 1967, ‘Exact Statistical Mechanics of a RelativisticMagnetic Anomaly’, Phys. Letters 25A, 716.ADSGoogle Scholar
  18. Friar, J.L., and S. Fallieros: 1981, ‘Diamagnetism, Gauge Transformations, and Sum Rules’, Am. J. Phys. 49, 847.ADSCrossRefGoogle Scholar
  19. Goldstein, L.: 1941, ‘On Some Points of the Bose-Einstein Condensation’, J. Chem. Phys. 9, 273.ADSCrossRefGoogle Scholar
  20. Grandy, W.T., Jr.: 1983, ‘Pauli Paramagnetism Revisited’, Rev. Bras. Fis. 13, 469.Google Scholar
  21. Herring, C.: 1966, ‘Exchange Interactions among Itinerant Electrons’, in G.T. Rado and H. Suhl(eds.), Magnetism, Vol.4, Academic Press, New York, Chap.5.Google Scholar
  22. Jancovici, B.: 1969, ‘Radiative Correction to the Ground-State Energy of an Electron in an IntenseMagnetic Field’, Phys. Rev. 187, 2275.ADSCrossRefGoogle Scholar
  23. Lamb, W.E., Jr., and A. Nordsieck: 1941, ‘On the Einstein Condensation Phenomenon’, Phys. Rev. 59, 677.ADSCrossRefGoogle Scholar
  24. Landau, L.: 1930, ‘Diamagnetismus der Metalle’, Z. Phys. 64, 629.ADSCrossRefGoogle Scholar
  25. Lebowitz, J.L., and J.K. Percus: 1963, ‘Statistical Thermodynamics of Nonuniform Fluids’, J. Math. Phys. 4, 116.MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. Lee, H. J., V. Canuto, H.Y. Chiu, and C. Chiuderi: 1969, ‘New State of Ferromagnetism in Degenerate Electron Gas and Magnetic Fields in Collapsed Bodies’, Phys. Rev. Letters 23, 390.ADSCrossRefGoogle Scholar
  27. Lifshitz, I.M. and A.M. Kosevich: 1954, ‘K teorii effekta de Haasa-van Afena dlya chastits sproizvoluym zakonom dispersii’, Doklady Akad. Nauk. (U.S.S.R.) 96, 963.Google Scholar
  28. May, R.M.: 1965, ‘Magnetic Properties of Charged Ideal Quantum Gases in n Dimensions’, J. Math. Phys. 6, 1462.ADSCrossRefGoogle Scholar
  29. Mermin, N.D.: 1965, thermal Properties of the Inhomogeneous Electron Gas’, Phys. Rev. 137, A1441.MathSciNetADSCrossRefGoogle Scholar
  30. Newton, R.G.: 1971, ‘Atoms in Superstrong Magnetic Fields’, Phys. Rev. D 3, 626.ADSCrossRefGoogle Scholar
  31. Onsager, L.: 1952, ‘Interpretation of the de Haas-van Alphen Effect’, Phil. Mag. 43, 1006.Google Scholar
  32. Pauli, W.: 1927, ‘Uber Geisentartung und Paramagnetisms’, Z. Phys. 41, 81.ADSCrossRefGoogle Scholar
  33. Peierls, R.: 1933, ‘Zur Theorie der Diamagnetismus von Leitungselektronen.II. Starke Magnetfelder’, Z. Phys. 81, 186.ADSzbMATHCrossRefGoogle Scholar
  34. Rainville, E.D.: 1945, ‘The Contiguous Function Relations for p F q with Applications to Bateman’s J%’ v and Rice’s H(ζ,р,v)’, Bull. Am. Math. Soc. 51, 714.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Rainville, E.D.: 1960, Special Functions, Macmillan, New York, Chap.5.zbMATHGoogle Scholar
  36. Rehr, J.J., and N.D. Mermin: 1970, ‘Condensation of the Rotating Two-Dimensional Ideal Bose Gas’, Phys. Rev. B 1, 3160.ADSCrossRefGoogle Scholar
  37. Robinson, J.E.: 1951, ‘Note on the Bose-Einstein Integral Functions’, Phys. Rev. 83, 678.ADSzbMATHCrossRefGoogle Scholar
  38. Rosa, S.G., and W.T. Grandy, Jr.: 1973, ‘The Magnetic Properties of Ideal Quantum Gases’, Rev. Bras. Fis. 3, 537.Google Scholar
  39. Scalapino, D.J.: 1961, ‘Irreversible Statistical Mechanics’, Ph.D thesis, Stanford Univ. (unpublished).Google Scholar
  40. Sondheimer, E.H., and A.H. Wilson: 1951, ‘The Diamagnetism of Free Electrons’, Proc. Roy. Soc. (London) A210, 173.ADSGoogle Scholar
  41. Stillinger, F.H., Jr., and F.P. Buff: 1962, ‘Equilibrium Statistical Mechanics of Inhomogeneous Fluids’, J. Chem Phys., 37. 1.ADSCrossRefGoogle Scholar
  42. Stoner, E.C.: 1935, ‘The Temperature Dependence of Free Electron Susceptibility’, Proc. Roy. Soc. (London) A152, 672.ADSGoogle Scholar
  43. Taylor, J.R.: 1972, Scattering Theory, Wiley, New York, p.310.Google Scholar
  44. Ternov, I.M., V.G. Bagrov, V.A. Bordovitzin, and O.F. Dorofeev: 1969, ‘Concerning the Anomalous Magnetic Moment of the Electron’, Sov. Phys. JETP 28, 1206.ADSGoogle Scholar
  45. Titchmarsh, E.C.: 1930, Theory of the Riemann Zeta Function, Cambridge Univ. Press, Cambridge.Google Scholar
  46. Trugman, S.A.: 1986, ‘A General Theory of Inhomogeneous Systems, Based on Maximum Entropy’, Phys. Rev. Letters 57, 607.ADSCrossRefGoogle Scholar
  47. van Leeuwen, H.-J.: 1919, ‘Problèmes de la Théorie Electronique du Magnétisme’, Ph.D thesis, Leiden [J. de Phys. et Le Radium 2, 361(1921)]Google Scholar
  48. Watson, G.N.: 1918, ‘The Diffraction of Electric Waves by the Earth’, Proc.Roy. Soc. (London) A95, 83.ADSGoogle Scholar
  49. Widom, A.: 1968a, ‘Statistical Mechanics of Rotating Quantum Liquids’, Phys. Rev. 168, 150.ADSCrossRefGoogle Scholar
  50. Widom, A.: 1968b, ‘Superfluid Phase Transitions in One and Two Dimensions’, Phys. Rev. 176, 254.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Walter T. GrandyJr.
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WyomingUSA

Personalised recommendations