• Walter T. GrandyJr.
Part of the Fundamental Theories of Physics book series (FTPH, volume 19)


Phenomenological thermodynamics consists primarily of a set of empirical rules and relations which, for more than one hundred fifty years, has provided a correct description of many of the macroscopic properties of bulk matter. Although the rules evolved some during this period, once the concept of energy and its conservation was grasped, as well as that of entropy, the rules quickly achieved their present form. With the advent of a serious particulate view of matter, however, it was realized that the thermodynamic rules were possibly only manifestations of the fundamental physical laws governing interactions among the basic constituents of matter; that is, atoms and molecules. Thus, one of the objectives of what Gibbs first called statistical mechanics is to provide an acceptable and fundamental explanation of phenomenological thermodynamics, in both the physical and philosophical senses. In addition, one might hope to go further and describe all physical properties of bulk matter in this way.


Phase Space Partition Function Structure Function Boltzmann Equation Kinetic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.W.: 1972, ‘More is Different’, Science, 177 393.ADSCrossRefGoogle Scholar
  2. Baierlein, R.: 1968, ‘Forces, Uncertainty, and the Gibbs Entropy’,Am. J. Phys. 36 625.ADSCrossRefGoogle Scholar
  3. Baierlein, R.: 1971, Atoms and Information Theory Freeman, San Francisco.Google Scholar
  4. Berry, M.V.: 1978, ‘Regular and Irregular Motion’, in S. Jorna (ed.), Topics in Nonlinear Dynamics Am. Inst, of Physics, New York, pp. 16–120.Google Scholar
  5. Blackett, P.M.S.: 1962, ‘Memories of Rutherford’, in J.B. Birks (ed.), Rutherford at Manchester Heywood, London, p. 102.Google Scholar
  6. Boltzmann, L.: 1866, ‘Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie’, Wien. Ber. 53 195.Google Scholar
  7. Boltzmann, L.: 1872, ‘Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen’, Wien. Ber. 66, 275.Google Scholar
  8. Boltzmann, L.: 1877, ‘Uber die Beziehung zwischen dem zweiten Hauptsatzes der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung, respektive den Sätzen über das Wärmegleich gewicht’,Wien. Ber. 76 373.Google Scholar
  9. Boltzmann, L.: 1887, ‘Über die mechanischen Analogien des zweiten Hauptsatzes der Thermodynamik’, J. r. ang. Math. 100 201.CrossRefGoogle Scholar
  10. Boltzmann, L.: 1888, ‘Über einige Fragen der kinetischen Gastheorie’, Wien. Ber. 96, 891.Google Scholar
  11. Boltzmann, L.: 1896, Vorlesungen über Gastheorie Barth, Leipzig (Part I, 1896; Part II, 1898.) [English translation, S.G. Brush: 1964, Lectures on Gas Theory Univ. of California Press, Berkeley].zbMATHGoogle Scholar
  12. Boltzmann, L.: 1905, Populäre Schriften Barth, Leipzig, p.360.zbMATHGoogle Scholar
  13. Brush, S.G.: 1976, The Kind of Motion we Call Heat Princeton Univ. Press, Princeton.Google Scholar
  14. Cohen, E.G.D.: 1973, ‘The Generalization of the Boltzmann Equation to Higher Densities’, Acta Phys. Austriaca Suppl. X, 157.Google Scholar
  15. Ehrenfest, P., and T. Ehrenfest: 1911, ‘Begriffliche Grundlagen der statistichen Auffassung in der Mechanik’, in Vol.IV, Part 32, Encyklopädie der Mathematischen Wissenschaften„ Teubner, Leipzig [English translation, M.J. Moravcsik: 1959, The Conceptual Foundations of the Statistical Approach in Mechanics Cornell Univ. Press, Ithaca, N.Y.].Google Scholar
  16. Einstein, A.: 1902, ‘Kinetische Theorie des Wärmegleichgewichtes und des zweiten Hauptsatzes der Thermodynamik’, Ann. d. Phys. 9 417.ADSCrossRefGoogle Scholar
  17. Einstein, A.: 1903, ‘Eine Theorie der Grundlagen der Thermodynamik’, Ann. d. Phys. 11, 170.ADSCrossRefGoogle Scholar
  18. Ernst, M.H., L.K. Haines, and J.R. Dorfman: 1969, ‘Theory of Transport Coefficients for Moderately Dense Gases’, Rev. Mod. Phys. 41 296.ADSCrossRefGoogle Scholar
  19. Esterman, I., O.C. Simpson, and O Stern: 1947, ‘The Free Fall of Atoms and the Measurement of the Velocity Distribution in a Molecular Beam of Cesium Atoms’, Phys. Rev. 71, 238.ADSCrossRefGoogle Scholar
  20. Gibbs, J.W.: 1876, ‘On the Equilibrium of Heterogeneous Substances’,Trans. Conn. Acad. 3, 108.Google Scholar
  21. Gibbs, J.W.: 1878, ‘On the Equilibrium of Heterogeneous Substances’,Trans. Conn. Acad. 3, 343.Google Scholar
  22. Hopf, E.: 1932, ‘Complete Transitivity and the Ergodic Principle’, Proc. Natl. Acad. Sei. (U.S.A.) 18 204.ADSCrossRefGoogle Scholar
  23. Jaynes, E.T.: 1965, ‘Gibbs vs Boltzmann Entropies’, Am. J. Phys. 33, 391.ADSzbMATHCrossRefGoogle Scholar
  24. Jaynes, E.T.: 1971, ‘Violation of Boltzmann’s fT-Theorem in Real Gases’,Phys. Rev. A4 747.ADSGoogle Scholar
  25. Khinchin, A.I.: 1949, Mathematical Foundations of Statistical Mechanics Dover, New York.zbMATHGoogle Scholar
  26. Kofsky, I.L., and H. Levinstein: 1948, ‘A Dynamic Method for the Determination of the Velocity Distribution of Thermal Atoms’, Phys. Rev. 74 500.ADSCrossRefGoogle Scholar
  27. Lanford, O.E., III: 1975, ‘Time Evolution of Large Classical Systems’, in J. Moser (ed.), Dynamical Systems, Theory and Applications (Lecture Notes in Physics, Vol. 38) SpringerVerlag, Berlin.Google Scholar
  28. Lebowitz, J.L.: 1972, ‘Hamiltonian Flows and Rigorous Results in Nonequilibrium Statistical Mechanics’, in S.A. Rice, K.F. Freed, and J.C. Light (eds.), Statistical Mechanics: New Concepts, New Problems, New Applications Univ. of Chicago Press, Chicago.Google Scholar
  29. Lebowitz, J.L., and O. Penrose: 1973, ‘Modern Ergodic Theory’,Physics Today February, p.23.Google Scholar
  30. Liouville, J.: 1838, ‘Note sur la Théorie de la variation des constantes arbitraires’, J. de Math. 3 342, 348.Google Scholar
  31. Loschmidt, J.: 1876, ‘Über den Zustand des Wärmegleichgewichtes eines Systeme von Körpern mit Rucksicht auf die Schwerkraft’,Wien. Ber. 73 128, 366.Google Scholar
  32. Loschmidt, J.: 1877a, ‘Über den Zustand des Wärmegleichgewichtes eines Systeme von Körpern mit Rucksicht auf die Schwerkraft’, Wien. Ber. 75 287.Google Scholar
  33. Loschmidt, J.: 1877b, ‘Über den Zustand des Wärmegleichgewichtes eines Systeme von Körpern mit Rucksicht auf die Schwerkraft’, Wien. Ber. 76 209.Google Scholar
  34. Ma, S.-K.: 1985, Statistical Mechanics World Scientific, Philadelphia, p.ix. Google Scholar
  35. Maxwell, J.C.: 1860a, ‘Illustrations of the Dynamical Theory of Gases.I. On the motions and collisions of perfectly elastic spheres’, Phil. Mag.(4) 19 19.Google Scholar
  36. Maxwell, J.C.: 1860b, ‘Illustrations of the Dynamical Theory of Gases.II. On the process of diffusion of two or more kinds of moving particles among one another’,Phil. Mag. (4) 20, 21.Google Scholar
  37. Maxwell, J.C.: 1860c, ‘Illustrations of the Dynamical Theory of Gases.III. On the collision of perfectly elastic bodies of any form’, Phil. Mag. (4) 20 33.Google Scholar
  38. Maxwell, J.C.: 1867, ‘letter to P.G. Tait on 11 December’, in C.G. Knott, Life and Scientifìc Work of Peter Gutherie Tait Cambridge Univ. Press, Cambridge, 1911.Google Scholar
  39. Maxwell, J.C.: 1870, ‘letter to J.W. Strutt on 6 December’, in R.J. Strutt, Life of John William Strutt, Third Baron Rayleigh Univ. of Wisconsin Press, Madison, 1968.Google Scholar
  40. Mayr, E.:.1982, Discussion in an interview with R. Lewin, Science 216, 718.ADSCrossRefGoogle Scholar
  41. Mohling, F.: 1982, Statistical Mechanics Publishers Creative Services, New York.Google Scholar
  42. Ornstein, L.S., and W.R. von Wijk: 1932, ‘Optische Untersuchung des Akkommodationskoeffizi- enten der Molekulartranslation und dessen Verteilungsfunktion in einen verdünten Gase’, Z. Phys . 78 734.ADSCrossRefGoogle Scholar
  43. Plancherai, M.: 1913, ‘Beweis der Unmöglichkeit ergodischer mechanischer Systeme’, Ann. d. Phys. 42 1061.ADSCrossRefGoogle Scholar
  44. Planck, M.: 1906, Vorlesungen über die Theorie der Wärmestrahlung Barth, Wien.zbMATHGoogle Scholar
  45. Poincaré, H.: 1890, ‘Sur le problème des trois corps et les équations de la dynamique’,Acta Math. 13, 1.zbMATHGoogle Scholar
  46. Rosenthal, A.: 1913, ‘Beweis der Unmöglichkeit ergodischer Gassysteme’, Ann. d. Phys. 42, 796.ADSCrossRefGoogle Scholar
  47. Schrödinger, E.: 1960, Statistical Thermodynamics Cambridge Univ. Press, Cambridge.Google Scholar
  48. Sinai, Ya.G.: 1970, ‘Dynamical Systems with Elastic Reflections’, Russian Math. Sur. 25 137.MathSciNetADSzbMATHGoogle Scholar
  49. Smale, S.: 1980, ‘On the Problem of Reviving the Ergodic Hypothesis of Boltzmann and Birkhoff’, Ann. N.Y. Acad. Sci. 357, 260.ADSCrossRefGoogle Scholar
  50. Sondheimer, E.H., and A.H. Wilson: 1951, ‘The Diamagnetism of Free Electrons’, Proc. Roy. Soc. (London) A210 173.ADSGoogle Scholar
  51. Uhlenbeck, G.E.: 1960, ‘Some Recent Progress in Statistical Mechanics’, Physics Today July, p.16.Google Scholar
  52. Uhlenbeck, G.E.: 1973, ‘The Validity and the Limitations of the Boltzmann Equation’, Acta Phys. Austriaca Suppl.X 107.Google Scholar
  53. Wightman, A.S.: 1985, ‘Introduction to the Problems’, in G. Velo and A.S. Wightman (eds.), Regular and Chaotic Motions in Dynamic Systems Plenum, New York.Google Scholar
  54. Zermelo, E.: 1896, ‘Über einen Satze der Dynamik und die mechanische Wärmetheorie’, Ann. d. Phys. 57, 485.ADSGoogle Scholar
  55. Zermelo, E.: 1896b, ‘Über mechanische Erklärungen irreversibler Vorgange. Eine Antwort auf Hrn. Boltzmann’s “Entgegnung” Ann. d. Phys. 59, 793.ADSGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Walter T. GrandyJr.
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WyomingUSA

Personalised recommendations