Skip to main content

Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry

  • Chapter

Part of the Synthese Library book series (SYLI,volume 188)

Abstract

A number of psychophysical studies concerning the detection, localization and recognition of objects in the visual field have suggested a two-stage theory of human visual perception. The first stage is the “preattentive” mode, in which simple features are processed rapidly and in parallel over the entire visual field. In the second, “attentive” mode, a specialized processing focus, usually called the focus of attention, is directed to particular locations in the visual field. The analysis of complex forms and the recognition of objects are associated with this second stage.1 The computational justification for such a hypothesis comes from the realization that while it is possible to imagine specific algorithms performing tasks such as shape analysis and recognition at specific locations, it is difficult to imagine these algorithms operating in parallel over the whole visual scene, since such an approach will quickly lead to a combinatorial explosion in terms of required computational resources.2 This is essentially the major critique of Minsky and Papert to a universal application of perceptrons in visual perception.3 Taken together, these empirical and theoretical studies suggest that beyond a certain preprocessing stage, the analysis of visual information proceeds in a sequence of operations, each one applied to a selected location (or locations).

Keywords

  • Selective Attention
  • Active Unit
  • Lateral Geniculate Nucleus
  • Visual Scene
  • Central Representation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-009-3833-5_5
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   279.00
Price excludes VAT (USA)
  • ISBN: 978-94-009-3833-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   359.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Neisser, Cognitive psychology, Appleton-Century-Crofts, New York, 1967

    Google Scholar 

  2. J. R. Bergen and B. Julesz, “Focal attention in rapid pattern discrimination,” Nature 303, 696–696, 1983

    PubMed  CrossRef  Google Scholar 

  3. A. Treisman, “The role of attention in object perception,” in: Physical and biological processing of images, O. J. Braddick and A. C. Sleigh, eds., Springer-Verlag, Berlin, 1983

    Google Scholar 

  4. S. Ullman, “Visual routines,” Cognition, 18, 97–97, 1984;

    PubMed  CrossRef  Google Scholar 

  5. B. Julesz, “A brief outline of the texton theory of human vision,” Trends in Neurosci., 7, 41–41, 1984.

    CrossRef  Google Scholar 

  6. T. Poggio, “Routing thoughts,” A. I. Working Paper 258, Mass. Institute of Technology, 1984

    Google Scholar 

  7. Ullman, 1984.

    Google Scholar 

  8. M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, 1969.

    Google Scholar 

  9. A. Treisman and G. Gelade, “A feature-integration theory of attention,” Cog. Psychol., 12, 97–97, 1980

    CrossRef  Google Scholar 

  10. A. Treisman, “Perceptual grouping and attention in visual search for features and for objects,” J. Exp. Psychol. HP and P., 8, 194–194, 1982

    CrossRef  Google Scholar 

  11. Treisman, 1983

    Google Scholar 

  12. Bergen and Julesz, 1983

    Google Scholar 

  13. Julesz, 1984.

    Google Scholar 

  14. Treisman, 1983;

    Google Scholar 

  15. B. Julesz and J. R. Bergen, “Textons, the fundamental elements in preattentive vision and perception of textures,” Bell System Tech. J., 62, 1619–1619,1983.

    Google Scholar 

  16. Nielsen and Poggio, unpublished experiments.

    Google Scholar 

  17. C. W. Eriksen and J. E. Hoffman, “Temporal and spatial characteristics of selective encoding from visual displays,” Perception and Psychophysics, 12(2B), 201–201, 1972;

    CrossRef  Google Scholar 

  18. M. I. Posner, “Orienting of attention,” Quart. J. Exp. Psychol., 32, 3–3, 1980;

    CrossRef  Google Scholar 

  19. H. S. Bashinksi and V. R. Bacharach, “Enhancement of perceptual sensitivity as the results of selectively attending to spatial locations,” Perceptions and Psychophysics, 28, 241–241, 1980;

    CrossRef  Google Scholar 

  20. R. Remington and L. Pierce, “Moving attention: evidence for time-invariant shifts of visual selective attention,” Perception and Psychophysics, 35, 393–393, 1984.

    PubMed  CrossRef  Google Scholar 

  21. M. E. Goldberg and R. H. Wurtz, “Activity of superior colliculus in behaving monkey. II. Effect of attention and neural responses,” J. Neurophysiol, 35, 560–560, 1972.

    PubMed  Google Scholar 

  22. C. Bushnell, M. E. Goldberg and D. L. Robinson, “Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention,” J. Neurophysiol., 4,. 755–755, 1981.

    Google Scholar 

  23. V. B. Mountcastle, R. A. Andersen and B. C. Motter, “The influence of attentive fixation upon the excitability of the light-sensitive neurons on the posterior parietal cortex,” J. Neurosci., 1, 1218–1218, 1981.

    PubMed  Google Scholar 

  24. P. Haenny, J. Maunsell and P. Schiller, “Cells in prelunate cortex alter response to visual stimuli of different behavioral significance,”Perception, 13, A 7, 1984.

    Google Scholar 

  25. S. M. Zeki, “Functional specialization in the visual cortex of the rhesus monkey,” Nature, 274, 423–423, 1978;

    PubMed  CrossRef  Google Scholar 

  26. H. B. Barlow, “Critical limiting factors in the design of the eye and visual cortex,” Proc. Roy. Soc. Lond. B, 212, 1–1, 1981.

    CrossRef  Google Scholar 

  27. F. W. C. Campbell and J. Robson, “Application of Fourier analysis to the visibility of gratings,,” J. Physiol., 197, 551–551, 1968

    PubMed  Google Scholar 

  28. H. R. Wilson and J. R. Bergen, “A four mechanism model for threshold spatial vision,” Vis. Res., 19, 19–19, 1979.

    PubMed  CrossRef  Google Scholar 

  29. By higher, we denote some stage of cortical processing further removed from the periphery.

    Google Scholar 

  30. W. Schneider and R. M. Shiffrin, “Controlled and atomatic human information processing. I. Detection, search and attention,” Psychol. Rev., 84, 1–1, 1977.

    CrossRef  Google Scholar 

  31. E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image,” Proc. Natl. Acad. Sci. USA, 80 5163–5163, 1983;

    PubMed  CrossRef  Google Scholar 

  32. E. H. Land, D. H. Hubel, M. S. Livingstone, S. H. Perry and M. M. Burns, “Color-generating interactions across the corpus callosum,” Nature, 303, 616–616, 1983.

    PubMed  CrossRef  Google Scholar 

  33. M. I. Posner, C. R. R. Snyder and B. J. Davidson, “Attention and the detection of signals,” J. Exp. Psycho. Gen., 109, 160–160, 1980.

    CrossRef  Google Scholar 

  34. J. A. Feldman, “Dynamic connections in neural networks,” Bioi. Cybern., 46, 27–27, 1982, who introduced this term

    CrossRef  Google Scholar 

  35. J. A. Feldman and D. H. Ballard, “Connectionist models and their properties,” Cognitive Science, 6, 205–205, 1982.

    CrossRef  Google Scholar 

  36. This is essentially the mechanism Feldman and Ballard (1982) propose for their implementation of a WTA network.

    Google Scholar 

  37. K. P. Hadeler, “On the theory of lateral inhibition,” Kybernetik, 14, 161–161, 1974.

    PubMed  CrossRef  Google Scholar 

  38. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys., 5, 115–115, 1943.

    CrossRef  Google Scholar 

  39. A. Rosenfeld, Multiresolution image processing and analysis, A. Rosenfeld, ed., Springer-Verlag, Berlin, 1984

    Google Scholar 

  40. The computational structure is similar to the Wimbledon tennis tournament where players drop out if they lose a single match (a so-called knock-out competition).

    Google Scholar 

  41. Bergen and Julesz, 1983

    Google Scholar 

  42. P. Lennie, “Parallel visual pathways: a review,” Vision Res., 20, 561–561, 1980;

    PubMed  CrossRef  Google Scholar 

  43. S. M. Sherman, “Functional organization of the W-, X- and Y-cell pathways in the cat: a review and hypothesis,” in: Progress in psychobiology and physiological psychology, J. M. Sprague and A. N. Epstein, Academic Press, New York, 1984.

    Google Scholar 

  44. M. Minsky, “K-lines: a theory of memory,” A. I. Memo 516, Mass. Institute of Technology, Cambridge, 1979.

    Google Scholar 

  45. Posner, Snyder and Davidson, 1980.

    Google Scholar 

  46. G. L. Shulman, R. W. Remington and J. P. McLean, “Moving attention through visual space,” J. Exp. Psychol., HP and P, 5, 522–522, 1979.

    CrossRef  Google Scholar 

  47. C. W. Eriksen and D. W. Schultz, “Retinal locus and acuity in visual information processing,” Bull. Psychonomic Soc., 9, 81–81, 1977

    Google Scholar 

  48. Y. Tsal, “Movements of attention across the visual field,” J. Exp. Psychol., HP and P, 9, 523–523, 1983.

    CrossRef  Google Scholar 

  49. Shulman et al., 1979

    Google Scholar 

  50. Tsal, 1983

    Google Scholar 

  51. see however Remington and Pierce, 1984.

    Google Scholar 

  52. Posner, 1980.

    Google Scholar 

  53. M. I. Posner, Y. Cohen and R. D. Rafal, “Neural systems control of spatial orienting,” Phil. Trans. R. Soc. Lond. B, 298, 187–187, 1982.

    CrossRef  Google Scholar 

  54. Treisman, 1982.

    Google Scholar 

  55. Posner, 1980

    Google Scholar 

  56. M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt. II.” Psychol. Forsch., 4, 301–301, 1923

    CrossRef  Google Scholar 

  57. J. Beck, “Perceptual grouping produced by line figures,” Perception and Psychophysics, 2, 491–491, 1967.

    CrossRef  Google Scholar 

  58. F. L. Engel, “Visual conspicuity, directed attention and retinal locus,” Vision Res., 11, 563–563, 1971.

    PubMed  CrossRef  Google Scholar 

  59. D. Sagi and B. Julesz, “Probing the mind’s ’fovea’ around a peripheral target with a small test light,” Perception, 13, A23, 1984.

    CrossRef  Google Scholar 

  60. G. Geiger, “Eccentric enhancement of form perception,” Proc. IEEE Int. Conf. Systems, Man and Cyber., 1984.

    Google Scholar 

  61. Treisman and Gelade, 1980

    Google Scholar 

  62. A. Treisman and H. Schmidt, “Illusory conjunctions in the perception: of objects,” Cog. Psychol., 14, 107–107, 1982

    CrossRef  Google Scholar 

  63. A. Treisman and R. Paterson, “Emergent features, attention and object perception,” J. Exp. Psychol., HP and P, 10, 12–12, 1984.

    CrossRef  Google Scholar 

  64. D. Marr, Vision, Freeman and Co., San Francisco, 1982

    Google Scholar 

  65. D. Terzopoulos, “Integrating visual information from multiple sources for the cooperative computation of surface shape,” in: From pixels to predicates: recent advances in computational and robotic vision, A. Pentland, ed., Ablex, New Jersey, 1984.

    Google Scholar 

  66. D. Marr and T. Poggio, “From understanding computation to understanding neural circuitry,” Neurosci. Res. Prog. Bull., 14, 470–470, 1977.

    Google Scholar 

  67. D. C. Van Essen and J. Maunsell, “Hierarchical organization and functional streams in the visual cortex,” Trtnds Neurosci.; 6, 370–370, 1983.

    CrossRef  Google Scholar 

  68. Lennie, 1980

    Google Scholar 

  69. W. Fries, “The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey,” Proc. Roy. Soc. Lond. B, 213, 73–73, 1981;

    CrossRef  Google Scholar 

  70. Sherman, 1984

    Google Scholar 

  71. B. V. Updyke, “The patterns of projection of cortical areas 17, 18 and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat,” J. Compo Neurol., 163, 377–377, 1975

    CrossRef  Google Scholar 

  72. G. Macchi and E. Rinvik, “Thalamotelencephalic circuits: a neuroanatomical survey,” in: Handbook of electroencephalography and clinical neurophysiology, 2(A), O. Creutzfeldt, ed., Elsevier, Amsterdam, 1976.

    Google Scholar 

  73. S. M. Sherman and C. Koch, “The anatomy and physiology of gating retinal signals in the mammalian lateral geniculate nucleus,” A. I. Memo 825, Mass. Institute of Technology, June, 1984.

    Google Scholar 

  74. T. Tsumoto, O. D. Creutzfeldt and C. R. Legendy, “Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat,” Exp. Brain Res., 32, 345–345, 1978.

    PubMed  CrossRef  Google Scholar 

  75. Sherman and Koch, 1984.

    Google Scholar 

  76. S Ullman, “Visual routines,” Cognition, 18,97–97, 1984.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Koch, C., Ullman, S. (1987). Shifts in Selective Visual Attention: Towards the Underlying Neural Circuitry. In: Vaina, L.M. (eds) Matters of Intelligence. Synthese Library, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3833-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3833-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8206-8

  • Online ISBN: 978-94-009-3833-5

  • eBook Packages: Springer Book Archive