Skip to main content

Scientific Rationale for Establishing Long-Term Ocean Bottom Observatory/Laboratory Systems

  • Chapter
Book cover Marine Minerals

Abstract

The oceanographic community is in a position scientifically and technologically to initiate programs leading to the installation of one or more permanently instrumented observatory/laboratory complexes on submarine spreading centers. The dynamic nature of these systems is well established. Yet, there has been no long term, inter-disciplinary effort focused on specific sites to document rates of change in system components, nor the interactions linking the physical, chemical, and biological processes involved. The ultimate goal of this natural laboratory approach would be to establish, then model, the temporal, and the spatial, co-variation among the active processes involved in generation and aging of 60 percent of the planetary surface. The technological and intellectual stimulation involved in successful implementation of natural seafloor laboratories will provide a new generation of dynamically-based, quantitatively testable models of ocean lithosphere genesis and of the biological and chemical consequences of its formation.

The complex and interrelated magmatic, deformational, hydrothermal and biological processes operating at ridge crests span a broad range of time and space scales. Consequently, a wide variety of coordinated and synchronized measurements will be essential to permit integrated interpretation of important cause-and-effect relationships. A number of seafloor-, borehole-, and water column-mounted instrument arrays currently exist or may be readily adapted for use. Power requirements, data acquisition, and sensor development are among the components of system architecture which must be developed to provide maximum flexibility to individual investigators and optimal coordination with other participants. Ideally, intensive characterization efforts will be focused on the unit element of accretion, or the ridge segment scale (50–100 km), although a number of specific sub-systems may be studied in greater detail at smaller scales. In addition, integration of the time-series data into evolving numerical simulations of spreading center subsystems will be a powerful feedback component in the evolution of the field program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballard, R.D., Holcomb, R.T., and van Andel, Tj.H., 1979, The Galapagos Rift at 86°W: sheet flows, collapse pits, and lava lakes of the rift valley; Jour. Geophys. Res., v. 84, pp. 5407–5422.

    Article  Google Scholar 

  • Ballard, R.D. and van Andel, Tj.H., 1977, Morphology and tectonics of the inner rift valley at lat. 36°50’N on the Mid-Atlantic Ridge; Geol. Soc. Am. Bull., v. 88, pp. 507–530.

    Article  Google Scholar 

  • Ballard, R.D., van Andel, Tj.H., and Holcomb, R.T., 1982, The Galapagos Rift at 86°W: 5. variations in volcanism, structure, and hydrothermal activity along a 30-km segment of the rift valley; Jour. Geophys. Res., v. 87, pp. 1149–1161.

    Article  Google Scholar 

  • Barpss, J.A. and Deming, J.W., 1983, Growth of black smoker bacteria at temperatures of at least 250°C; Nature, v. 303, no. 5916, pp. 423–426.

    Article  Google Scholar 

  • Bischoff, J.L. and Rosenbauer, R.J., 1984, The critical point and two-phase boundary of seawater, 200–500°C; Earth Planet. Sci. Letts., v. 68, pp. 172–180.

    Article  Google Scholar 

  • Bonatti, E., 1983, Hydrothermal metal deposits from the oceanic rifts: a classification. In: Rona, P.A., Bostrom, K., Laubier, L., and Smith, Jr, K.L. (eds.), Hydrothermal processes at seafloor spreading centers, Nato Conf. Ser. in Mar. Sci., Plenum Press, New York, v. 12, pp. 491–502.

    Google Scholar 

  • Cline, J.D. and Richards, F.A., 1969, Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH; Environ. Sci. Tech., v. 3, pp. 838–843.

    Article  Google Scholar 

  • Converse, D.R., Holland, H.D., and Edmond, J.M., 1982, Hydrothermal flow rates at 21°N; EOS, Trans. Amer. Geophys. Union, v. 63, pp. 472.

    Google Scholar 

  • Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., Von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, Tj.H., 1979, Submarine thermal springs on the Galapagos Rift; Science, v. 203, pp. 1073–1083.

    Article  Google Scholar 

  • Cox, A., Doell, R.R., and Dalrymple, G.B., 1964, Reversals of the Earth’s magnetic field; Science, v. 144, pp. 1537–1543.

    Article  Google Scholar 

  • Crane, K. and Ballard, R.D., 1981, Yolcanics and structure of the FAMOUS Narrowgate rift: evidence for cyclic evolution: AMAR; Jour. Geophys. Res., v. 86, no. B6, pp. 5112–5124.

    Article  Google Scholar 

  • Des Marais, D.J. and Moore, J.G., 1984, Carbon and its isotopes in mid-oceanic basaltic glasses; Earth Planet. Sci. Letts., v. 69, pp. 43–57.

    Article  Google Scholar 

  • Dymond, J., 1981, Geochemistry of Nazca Plate surface sediments: an evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources; In: Kulm, L.D., Dymond, J., Dasch, E.J., and Hussong, D.M. (eds.), Nazca Plate: Crustal formation and Andean convergence, Geol. Soc. Am. Mem., no. 154, pp. 133–174.

    Google Scholar 

  • East Pacific Rise Study Group, 1980, Crustal processes of the mid-ocean ridge; Science, v. 213, pp. 31–40.

    Article  Google Scholar 

  • Edmond, J.M., Measures, C., McDuff, R.E., Chan, L.H., Collier, R., Grant, B., Gordon, L.I., and Corliss, J.B., 1979, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data; Earth Planet. Sci. Letts., v. 46, pp. 1–18.

    Article  Google Scholar 

  • Ewing, J. and Ewing, M., 1967, Sediment distribution on the mid-ocean ridges with respect to spreading of the seafloor; Science, v. 156, pp. 1590–1592.

    Article  Google Scholar 

  • Fatton, E. and Roux, M., 1981, Etapes de l’organisation microstructurale chez Calyptogena magnifica Boss et Turner, bivalve à croissance rapide des sources hydrothermales oceaniques. Compte Rendu, Acad. Sci. Franc., v. 293, pp. 63–68.

    Google Scholar 

  • Francheteau, J. and Ballard, R.D., 1983, The East Pacific Rise near 20°N, 13°N, and 20°S: inferences for along-strike variability of axial processes of the mid-ocean ridge; Earth Planet. Sci. Letts., v. 64, pp. 93–116.

    Article  Google Scholar 

  • Goguel, J., 1983, A short note on continuity or discontinuity in the global tectonic plate velocities; Tectonophys., v. 100, pp. 1–4.

    Article  Google Scholar 

  • Goldfarb, M.S., Converse, D.R., Holland, H.D., and Edmond, J.M., 1983, The genesis of hot Spring deposits on the East Pacific Rise, 21°N; Econ. Geol. Monogr., v. 5, pp. 184–197.

    Google Scholar 

  • Hauksson, E, 1983, Episodic rifting and volcanism at Krafla in North Iceland: growth of large ground fissures along the plate boundary; Jour. Geophys. Res., v. 88, pp. 625–636.

    Article  Google Scholar 

  • Heath, G.R. and Dymond, J., 1977, Genesis and diagenesis of metalliferous sediments from the East Pacific Rise, Bauer Deep and Central Basin, Northwest Nazca Plate; Geol. Soc. Am. Bull., v. 88, pp. 723–733.

    Article  Google Scholar 

  • Hessler, R.R., Smithey, Jr., W.M., and Keller, C.H., 1985, Spatial and temporal variation of giant clams, tube worms, and mussels at deep-sea hydrothermal vents; In: Jones, M.L. (ed.), Hydrothermal vents of the Eastern Pacific: an overview, Bull. Biol. Soc. Washington, no. 6, pp. 411–428.

    Google Scholar 

  • Hey, R., Duennebier, F.K., and Morgan, W.J., 1980, Propagating rifts on mid-ocean ridges; Jour. Geophys. Res., v. 85, pp. 3647–3658.

    Article  Google Scholar 

  • Holcomb, R.T., 1980, Kilauea volcano Hawaii: chronology and morphology of the surficial lava flows; Unpubl. Ph.D. Thesis, Stanford University, California, 321 p.

    Google Scholar 

  • Huppert, H.E. and Sparks, R.S.J., 1984, Double-diffusive convection due to crystallization in magmas; Ann. Rev. Earth Planet. Sci., v. 12, pp. 11–37.

    Article  Google Scholar 

  • Jannasch, H. and Wirsen, CO., 1979, Chemosynthetic primary production of East Pacific seafloor spreading centers; Bioscience, v. 29, pp. 592–598.

    Article  Google Scholar 

  • Javoy, M., Pineau, F., and Allegre, C.J., 1982, Carbon geodynamic cycle; Nature, v. 300, pp. 171–173.

    Article  Google Scholar 

  • Johnson, K.S., Beehler, C.L., Sakamoto-Arnold, C.M., and Childress, J.J., 1986, In situ measurements of chemical distributions in a deep-sea hydrothermal vent field; Science, in press.

    Google Scholar 

  • Jones, W.J., Leigh, J.A., Mayer, F., Woese, C.R. and Wolfe, R.S., 1983, Methanococcus jannaschi sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent; Archiv, fur microbiologie, v. 136, pp. 254–261.

    Article  Google Scholar 

  • Karl, D.M., Burns, D.J., Orrett, K., and Jannasch, H.W., 1984, Thermophilic microbiolactivity in samples from deep sea hydrothermal vents; Mar. Biol. Letts., v. 5, pp. 227–231.

    Google Scholar 

  • Laubier, L., and Desbruyeres, D., 1984, Les oasis du fond des oceans; La Recherche, v. 15, pp. 1506–1517.

    Google Scholar 

  • Lewis, B.T.R., 1979, Periodicities in volcanism and longitudinal flow on the East Pacific-Rise at 23°N; Geophys. Res. Letts., v. 6, pp. 753–756.

    Article  Google Scholar 

  • Lichtman, G.S. and Eissen, J.-P., 1983, Time constraints on the evolution of medium-rate spreading centers; Geology, v. 11, pp. 592–595.

    Article  Google Scholar 

  • Lichtman, G.S., Normark, W.R., and Spiess, F.N., 1984, Photogeologic study of a segment of the East Pacific Rise axis near 21°N latitude; Geol. Soc. Am. Bull., v. 95, pp. 743–752.

    Article  Google Scholar 

  • Lister, C.R.B., 1977, Qualitative models of spreading center processes, including hydrothermal penetration; Tectonophysics, v. 37, pp. 203–218.

    Article  Google Scholar 

  • Lister, C.R.B., 1983, On the intermittency and crystallization mechanisms of sub-seafloor magma chambers; Geophys. J. R. Astron. Soc, v. 73, pp. 351–366.

    Google Scholar 

  • Lonsdale, P., 1983, Overlapping rift zones at the 5.5°S offset of the East Pacific Rise; Jour. Geophys. Res., v. 88, pp. 9393–9406.

    Article  Google Scholar 

  • Lupton, J.E., Delaney, J.R., Johnson, H.P., and Tivey, M.K., 1985, Entrainment and vertical transport of deep ocean water by buoyant hydrothermal plumes; Nature, v. 316, pp. 621–623.

    Article  Google Scholar 

  • Lutz, R.A., Fritz, L.W., and Rhoads, D.C., 1985, Molluscan growth at deep-sea hydrothermal vents; In: Jones, M.L. (ed.), Hydrothermal vents of the Eastern Pacific: an overview, Bull. Biol. Soc. Washington, no. 6, pp. 199–210.

    Google Scholar 

  • Macdonald, K.C., 1983, Crustal processes at spreading centers; Rev. Geophys. Space Physics, v. 21, no. 6, pp. 1441–1454.

    Article  Google Scholar 

  • Macdonald, K.C. and Fox, P.J., 1983, Overlapping spreading centers: new accretion geometry on the East Pacific Rise; Nature, v. 302, pp. 55–58.

    Article  Google Scholar 

  • Macdonald, K.C., Becker, K., Spiess, F.N., and Ballard, R.D., 1980, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise; Earth Planet. Sci. Letts., v. 48, pp. 1–7.

    Article  Google Scholar 

  • Marquart, G. and Jacoby, W.R., 1985, On the mechanism of magma injection and plate divergence during the Krafla rifting episode in NE-Iceland; Jour. Geophys. Res., v. 90, no. 12, pp. 10,178–10,193.

    Article  Google Scholar 

  • Massoth, G.J., Baker, E.T., Feely, R.A., and Curl, Jr., H.C., 1984, Hydrothermal signals away from the Southern Juan de Fuca Ridge; EOS, Trans. Amer. Geophys. Union, v. 65, pp. 1112.

    Google Scholar 

  • Minster, J.B., and Jordan, T.H., 1978, Present-day plate motions; Jour. Geophys. Res., v. 83, pp. 5331–5354.

    Article  Google Scholar 

  • National Research Council, 1983, Seafloor referenced positioning: needs and opportunities; Rept. of the Committee on Geodesy, Panel on Ocean Bottom Positioning, Natl. Academy Press, Washington, D.C., 53 p.

    Google Scholar 

  • Newhall, CG., Dzurisin, D., and Mullineux, L.S., 1984, Historical unrest at large quaternary calderas of the world, with special reference to Long Valley, California; U.S. Geol. Surv. Open-File Report 84–939, pp. 714–742.

    Google Scholar 

  • Normark, W.R., 1980, Delineation of the main extrusion zone of the East Pacific Rise at lat. 21°N; Geology, v. 4, pp. 681–685.

    Article  Google Scholar 

  • Norton, D., 1984, Theory of hydrothermal systems; Ann. Rev. Earth Planet. Sci., 12, pp. 155–177.

    Article  Google Scholar 

  • Rea, D.K., 1978, Asymmetric sea-floor spreading and a non-transform axis offset: the East Pacific Rise 20°S survey area; Geol. Soc. Am. Bull., v.89, pp. 838–844.

    Article  Google Scholar 

  • Reid, I.D., Orcutt, J.A., and Prothero, W.A., 1977, Seismic evidence for a narrow zone of partial melting underlying the East Pacific Rise at 21°N; Geol. Soc. Am. Bull., v. 88, pp. 678–682.

    Article  Google Scholar 

  • Richter, F.M. and Mckenzie, D., 1984, Dynamical models for melt segregation from a deformable matrix; Jour. Geol., v. 92, pp. 729–740.

    Article  Google Scholar 

  • Riedesal, M., Orcutt, J.A., Macdonald, K.C., and McClain, J.S., 1982, Microearthquakes in the black smoker hydrothermal field, East Pacific Rise at 21°N; J. Geophys. Res., v. 87, pp. 10613–10623.

    Article  Google Scholar 

  • RISE Team, 1980, East Pacific Rise: hot springs and geophysical experiments; Science, v. 207, pp. 1421–1433.

    Article  Google Scholar 

  • Schouten, H., Klitgord, K.D., and Whitehead, J.A., 1985, Segmentation of mid-ocean ridges; Nature, v. 317, pp. 225–229.

    Article  Google Scholar 

  • Schouten, H. and Klitgord, K.D., 1982, The memory of the accreting plate boundary and the continuity of fracture zones; Earth Planet. Sci. Letts., v. 59, pp. 255–266.

    Article  Google Scholar 

  • Sigurdsson, H. and Sparks, S.R.J., 1978, Lateral magma flow within rifted Icelandic crust; Nature, v. 274, pp. 126–130.

    Article  Google Scholar 

  • Spiess, F.N., 1985, Sub-oceanic geodetic measurements; Inst. Electric and Electronic Eng., Trans. Geosci. Rem. Sens., v. GE-23, pp. 502–510.

    Google Scholar 

  • Spiess, F.N., 1986, Deep ocean near-bottom surveying and sampling techniques; Trans. Geosci. Rem. Sens., v. GE-23, pp.

    Google Scholar 

  • Turner, J.S. and Gustafson, L.B., 1978, The flow of hot saline solutions from vents in the seafloor: some implications for exhalative massive sulfide and other ore deposits; Econ. Geol., v. 73, pp. 1082–1100.

    Article  Google Scholar 

  • Von Damm, K.L., 1983, Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise and Guaymas Basin, Gulf of California; Unpubl. Ph.D. thesis, Woods Hole Ocean. Inst.-Mass. Inst. Tech., Rept. WHOI-84-3, 240 p.

    Google Scholar 

  • Von Damm, K.L., Grant, B., and Edmond, J.M., 1984, Preliminary report on the chemistry of hydrothermal solutions at 21°N, East Pacific Rise; In: Rona, P.A., Bostrom, K., Laubier, L., and Smith, Jr., K.L. (eds.), Hydrothermal Processes at Seafloor Spreading Centers, Plenum Press, New York, pp. 369–389.

    Google Scholar 

  • Whitehead, J.A., Dick, H.J.B., and Scouten, H., 1985, A mechanism for magmatic accretion under spreading centers; Nature, v. 312, pp. 146–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Delaney, J.R. et al. (1987). Scientific Rationale for Establishing Long-Term Ocean Bottom Observatory/Laboratory Systems. In: Teleki, P.G., Dobson, M.R., Moore, J.R., von Stackelberg, U. (eds) Marine Minerals. NATO ASI Series, vol 194. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3803-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3803-8_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8192-4

  • Online ISBN: 978-94-009-3803-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics