Skip to main content

Solar Energy for Industrial Process Heat

  • Chapter
Advances in Solar Energy Technology

Abstract

Industrial process heat is the thermal energy used directly in the preparation or treatment of materials and items manufactured by an industry. Presently, the heat required by these industries is met by oil, natural gas, coal or electricity, but a large portion of industrial process heat is at sufficiently low temperatures which can easily be supplied by solar energy. The year round need for energy in industries allows a maximum utilization of solar equipment. Some advantage and disadvantage of using solar energy for providing process heat are listed in table 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.D. Fracer (1976), ‘Survey of the applications of solar thermal energy to industrial process heat’ Proc. 1976 Annual Meeting of the Am. Soc. of ISES, Sharing the Sun, Vol.5, Winnipeg, Aug. 15–20, 1976, pp. 46–57.

    Google Scholar 

  2. E. Hall, and R.G. Rupert (1976), ‘Survey of the applications of solar thermal energy systems to industrial process heat’ Proc. of Solar Industrial Process heat Workshop, College Park, MD, June 28–29, 1976, pp. 8–13.

    Google Scholar 

  3. S. David Hu (1983), ‘Handbook of Industrial Energy Conservation’ Van Nostrand Reinhold Company, Inc., New York.

    Google Scholar 

  4. K. Kreith and R. Davenport (1981), ‘An overview of solar industrial process heat (SIPH) applications below 120 C’ SERI/TR-252-1438, Nov.1981, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  5. A. Rabl (1981), ‘Direct solar industrial process heat’ PU/CEES Report No.118, Jan. 1981, Princeton University, Princeton, N.J., USA.

    Google Scholar 

  6. H. Kelly and K. Gawell (1981), ‘A new prosperity: building a sustainable energy future’, Brick House Publishing, Andover, MA.

    Google Scholar 

  7. J.E. Feustel (1981), ‘Application of solar process heat above 120°C in industrial processes’, Report from MAN Maschinenfabrick Augsburg Nurnberg, Aktiengesellschaft.

    Google Scholar 

  8. M.D. Fraser and M.S. Liers (1981), ‘Solar process heat systems’ Chapter 21 from Solar Energy Handbook (Edited J.F. Kreider and F. Kreith), Mc Graw-Hill Book Co., New York.

    Google Scholar 

  9. H.P. Garg (1982), ‘Treatise on Solar Energy’, John Wiley & Sons, England.

    Google Scholar 

  10. H.P. Garg (1986), ‘Solar Energy Technology-Vol.I’ D.Reidel Publishing Company, Holland.

    Google Scholar 

  11. W.C. Dickinson, A.F. Clark, and A. Iantuono (1976), ‘Shallow solar ponds for industrial process heat: The ERDA-SOHIO project’ UC RL-78288, Rev.1, Lawrence Livermore Lab., Livermore, California.

    Google Scholar 

  12. A.B. Casamajor (1978), ‘The application of shallow solar ponds for industrial process heat: case histories’ UCRL-81764, Lawrence Livermore Lab., Livermore, California.

    Google Scholar 

  13. H. Tabor (1981), ‘Solar ponds: Review article’ Solar Energy, 27(3), 181–194.

    Article  MathSciNet  Google Scholar 

  14. W.W.S. Charters (1983), ‘Solar ponds for industrial process heat’ International Symposium — Workshop on renewable energy sources, March 18–22, 1983, Lahore, Pakistan.

    Google Scholar 

  15. E.I.H. Lin (1982), ‘Regional Applicability and potential of salt-gradient solar ponds in the United States’, Vol.1 & 2, DOE/JPL-1060–50, Jet Propulsion Laboratory Publication, 82–10, Pasadena, California.

    Google Scholar 

  16. D.C. Beckley and G.R. Mather (1975), ‘Analysis and experimental tests of a high performance evacuated tube collector’, Owens-Illinois, Toledo, Ohio.

    Google Scholar 

  17. Annon (1979), ‘Solartron TC-100 vacuum tube collector’, General Electric document No. 78 SD 54215 B, August 1979, Philadelphia, Pa 19001, pp.32.

    Google Scholar 

  18. K. Hinotani, M. Osumi and K. Matsumoto (1981), ‘The performance of an evacuated glass tube collector upto medium temperatures and its application to industrial process heat production’, Proc. Conf. Solar World Forum, Brighton (Eng land), Aug. 23–28, 1981.

    Google Scholar 

  19. J.F. Kreider (1979), ‘Medium and high temperature solar processes’, Academic Press, New York.

    Google Scholar 

  20. F. Kreith, G.O.G. Lof, A. Rabl, and R. Winston (1980), ‘Solar collectors for low and intermediate temperature applications’ Prog. Energy Combust, Sci., 6, 1–34.

    Article  Google Scholar 

  21. R.L. Gervais and P.B. Box (1975), ‘Solar thermal electric power’, Astronautics and Aeronautics, 13, 18.

    Google Scholar 

  22. A. Rabl (1976), ‘Optical and thermal properties of Compound parabolic concentrators’, Solar Energy, 18(6), 497–511, 1976.

    Article  Google Scholar 

  23. W.W. Schertz (1977), ‘Nonimaging concentrators deliver high temperatures for industry’ Solar Engineering, 28–29.

    Google Scholar 

  24. J.W. Ramsey, B.P. Gupta and G.R. Knowles (1976), ‘Experimental evaluation of a cylindrical parabolic solar collector’, Amer. Soc. Mech. Engineers, 76–WA/HT-13. Also J. Heat Transfer, 99, 163, 1977.

    Google Scholar 

  25. D.T. Nelson, D.L. Evans, and R.K. Bansal (1975), ‘Linear Fresnel lens concentrators’, Solar Energy, 17, 285.

    Article  Google Scholar 

  26. J.D. Reichert (1977), ‘The Crosbyton solar power project’ Proc. ERDA on concentrating solar collectors’, Georgia Institute of Technology, Sept., 1977.

    Google Scholar 

  27. J.F. Kreider (1975), ‘Thermal performance analysis of the Stationary Reflector/Tracking absorber (SRTA) Solar concentrator’, J.Heat Transfer, 97, 451–456.

    Article  Google Scholar 

  28. R.G. Nix (1983), ‘Thermochemical energy transport in one 1–MW industrial process heat solar system’ SERI/TP-234-1785, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  29. D.P. Grimmer and K.C. Herr (1976), ‘Solar process heat from concentrating flat-plate collectors’, LA-UR-76-1492, Los-Alamos Scientific Laboratory, Los Alamos, New Mexico, USA.

    Google Scholar 

  30. A. Abhat (1983), ‘Low temperature latent heat thermal energy storage: Heat storage materials’, Solar Energy, 30(4), 313–332, 1983.

    Article  Google Scholar 

  31. R.H. Turner (1978), ‘High temperature thermal energy storage’. The Franklin Institute Press, Philadelphia, Pennsylvania, USA.

    Google Scholar 

  32. C.J. Swet (1980), ‘Energy storage for solar applications,’ Chapter 6, Solar Energy Handbook (Edited J.F. Kreider and K. Kreith), McGraw Hill Book Company.

    Google Scholar 

  33. M.A. Kettani (1977), ‘Storage of solar energy’ Chapter from Solar Energy Engineering (Edited A.A.M. Sayigh), Academic Press, New York.

    Google Scholar 

  34. C.L. Segaser(1975), ‘MIUS Technology-Evaluation-Thermal energy storage materials and devices’, Oak Ridge National Laboratory Report ORNL-HUD-MIUS-23, Nov. 1975.

    Google Scholar 

  35. H.P. Garg, S.C. Mullick and A.K. Bhargava (1985), ‘Solar Thermal Energy Storage’ D.Reidel Publishing Company, Holland.

    Google Scholar 

  36. R.W. Hallet and R.L. Garvaia (1977), ‘Central receiver solar thermal power system, Phase I, CORL Item 2, Pilot plant preliminary design report, Vol.5, Thermal Storage Subsystem,’ McDonnell Dougles Aeronautics Co., Report SAN/1108-8/5, 1977.

    Google Scholar 

  37. T.A. Chubb (1975), ‘Analysis of gas dissociation solar thermal power system’, Solar Energy, 17, 129–136.

    Article  Google Scholar 

  38. P.O. Carden (1977), ‘Energy Corradiation using the reversible ammonia reaction’, Solar Energy, 19, 365–378.

    Article  Google Scholar 

  39. H.B. Vakil and J.W. Flock (1978), ‘Closed loop Chemical systems for energy storage and transmission’, General Electric Company, Power Systems Laboratory Report C00–2676–1, 1978.

    Google Scholar 

  40. F.A. Jaeger, M.T. Howerton, S.E. Podaseck, J.E. Myers, D.G. Beshore and W.R. Haas (1978), ‘Development of ammoniated salts thermochemical energy storage systems’, Martin Marietta Corporation Report SAN/12294, May, 1978.

    Google Scholar 

  41. H.A. Wilkening Jr. (1978), ‘Solar industrial process hot water for cement block manufacturer’, Proc. Solar Industrial Process heat Conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  42. J.O. Vindum and L.P. Bonds (1978), ‘Solar energy for industrial process hot water’, Proc. Solar Industrial Process heat Conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  43. J.B. Trice and A.D. Cohen (1978), ‘Commercialization aspects of solar process hot water systems for the textile industry,’ Proc. Solar Industrial Process heat Conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  44. E.J. Carnegie, J.G. Pohl, and P. Niles (1978), ‘Agricultural Industrial heat air system’, Proc. Solar Industrial Process heat Conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  45. P.W. Niles, E.J. Carnegie, J.G. Pohl, and J.M. Cherne (1978), ‘Design and performance of an air collector for industrial Crop dehydration’, Solar Energy, 20(1), 19–23.

    Article  Google Scholar 

  46. B.J. Graham, M. Saarlas, and P.D. Sierer Jr. (1978), ‘Application of Solar energy to the dehydration of onions’, Proc. Solar Industrial process heat conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  47. S.B. Youngblood (1978), ‘Solar energy for industrial process steam’, Proc. Solar Industrial Process heat Conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  48. C.F. Kutscher, R.L. Davenport, D.A. Dougherty, R.C. Gee, P.M. Masterson, and E.K. May (1982), ‘Design approaches for solar Industrial process heat systems’ SERI/IR-253–1356, Aug. 1982, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  49. G.B. Eldridge, C.F. Roos and G.G. Goranson (1978), ‘The industrial process heat demonstration at the home laundry,’ Pasadena, California, Proc. Solar Industrial process heat Conference, Oct. 18–20, 1978, Vol.1.

    Google Scholar 

  50. B.G. Eldridge (1980), ‘The solar production of industrial process steam’, Jacobs-Del solar systems Inc. Report.

    Google Scholar 

  51. Inter techno logy/solar coorporation (1977), ‘Analysis of the economic potential of solar thermal energy to provide industrial process heat’, Report No.COO/2829-76/1, U.S. Energy Research and Development Administration, Feb. 7, 1977.

    Google Scholar 

  52. L.M. Murphy and E.K. May (1982), ‘Steam generation in line focus solar collectors: A comparative assessment of thermal performance, operating stability, and cost issues’, SERI/TR-632-1311, Solar Energy Research Institute, Golden, Colarado, USA.

    Book  Google Scholar 

  53. R.J. Pederson and E.K. May (1982), ‘Flow instability during direct steam generation in a line-focus solar collector system’ SERI/TR-632-1311, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  54. H.F. Schuler, D.F. Rost, and P.E. Gene Ameduri (1979), ‘Solar energy system with heat augmentation: for industrial process heat, an update’ Proc. International Solar Energy Congress, May 28–June 1, 1979, Atlanta, Georgia, USA.

    Google Scholar 

  55. A. Weinstein, D. Duncan, G.V. Zuiden and D. Niess (1979), ‘Applying heat pump engineering to industrial hot water needs’ Solar Engineering, 24–26, March 1979.

    Google Scholar 

  56. F.J. Friedrich (1983), ‘Thermal applications of solar energy in industry’, Proc. Solar World Congress, Perth, Australia, Aug. 14–19, 1983.

    Google Scholar 

  57. J.M. Gordon and A. Rabl (1982), ‘Design, analysis and optimization of solar industrial process heat plants without storage’, Solar Energy, 28(6), 519–530, 1982.

    Article  Google Scholar 

  58. W.R.W. Read (1983), ‘Giudelines leading to economic solar industrial heat generating systems’, Proc. Solar World Congress, Perth, Australia, Aug. 14–19, 1983.

    Google Scholar 

  59. C.W. Lewis (1980), ‘The prospects for solar energy use in industry within the United Kingdom’, Solar Energy, 24, 47–53.

    Article  Google Scholar 

  60. T. Nanya, K. Hinotani, I. Kanatani and H. Hayama (1981), ‘Application of solar process heat system to laundry industry’, Solar World Forum, Proc. ISES Congress, Aug. 23–28, 1981, Vol.2, p.1639–1643.

    Google Scholar 

  61. H.P. Garg (1986), ‘Solar Water Heating Systems’ D.Reidel Publishing Company, Inc., Holland.

    Google Scholar 

  62. C.F. Kutscher (1981), ‘The application of solar thermal energy to buildings and industry’ SERI/TP-641-1222, May 1981, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  63. W.C. Dickinson, A.F. Clark, and Iantuono (1976), ‘Shallow solar ponds for industrial process heat: The ERDA-Sohio project’, Report UCRL-78288, Rev. 1, Lawrence Livermore Laboratory, Livermore, California, USA.

    Google Scholar 

  64. A.F. Clark and W.C. Dickinson (1980), ‘Shallow solar ponds’, Chapter 12 from Solar Energy Technology Handbook, Part A, Engineering Fundamentals (Edited W.C. Dickinson and P.N. Cheremisionoff) Marcell Dekker Inc., New York.

    Google Scholar 

  65. A. Kudish (1981), ‘Sede Boquer Shallow pond project’, Energy, 6, 277–292.

    Article  Google Scholar 

  66. H.P. Garg, B. Bandyopadhyay, Usha Rani and D.S. Hrishikesan (1982), ‘Shallow solar pond: State-of the-art’ Energy Conversion and Management, 22, 117–131.

    Article  Google Scholar 

  67. W.R. Read (1981), ‘Applications in industrial processes’, Solar World Forum, Vol.2, pp. 1591–1595, Proc. ISES Congress, Brighton, England, 23–28, Aug., 1981.

    Google Scholar 

  68. W.R. Read (1979), ‘Solar Energy for process heating in industrial applications’, Victorian Solar Energy Research Committee, Solar Energy Today, Feb.18–21, 1979, University of Melbourne.

    Google Scholar 

  69. G.R. Guinn (1978), ‘Process drying of soyabeans using heat from solar energy’, Proc. Solar Industrial process heat Conference, Oct. 18–20, 1978, Vol.1, p.63–78.

    Google Scholar 

  70. Battelle Columbus Laboratories (1977), ‘Survey of the applications of solar thermal energy systems to industrial process heat’, ERDA Rep. No.TID/27348/1, 3 Volumes.

    Google Scholar 

  71. A.B. Casamajor and R.L. Wood (1978), ‘Limiting factors for the near term potential of solar industrial process heat’, Lawrence Livermore Laboratory, Report UCRL-52587.

    Google Scholar 

  72. S. Baron (1981), ‘Solar Energy: Economics US Energetics’ Mech. Eng., 103, 35–41.

    MathSciNet  Google Scholar 

  73. W.C. Dickinson and A.B. Casamajor (1980), ‘Industrial process heat’ Chapter 36, Solar Energy Technology Handbook Part B(W.C.Dickinson and P.N.Cheremisinoff), Marcell Dekker, Inc., New York.

    Google Scholar 

  74. S.A. Klein et al (1981), ‘TRNSYS-A transient simulation program’, Users Manual, Engineering Experiment Station Report No.38-11, Solar Energy Laboratory, University of Wisconsin-Madison.

    Google Scholar 

  75. W.A. Beckman, S.A. Klein, and J.A. Duffie (1976), ‘A design procedure for solar heating systems’, Solar Energy, 18, 113.

    Article  Google Scholar 

  76. J.A. Duffie and J.W. Mitchell (1983), ‘f-chart: predictions and measurements’, J. Solar Energy Engineering, Trans. ASME, 105, 3–9.

    Article  Google Scholar 

  77. H.C. Hottel and B.B. Woertz (1942), ‘Performance of flat-plate solar heat collectors’ Trans. ASME, 64, 91.

    Google Scholar 

  78. A. Whillier (1953), ‘Solar Energy collection and its utilization for house heating’, Sc. D.Thesis, Deptt. of Mech. Engg., M.I.T., USA.

    Google Scholar 

  79. H.C. Hottel and A. Whillier (1958), ‘Evaluation of flat-plate collector performance’, Trans. Conf. use of Solar Energy, Vol.2, part 1, p.74, University of Arizona Press.

    Google Scholar 

  80. B.Y.H. Liu and R.C. Jordan (1963), A rational procedure for predicting the longterm average performance of flat-plate solar energy collectors, Solar Energy, 7, 53.

    Article  Google Scholar 

  81. S.A. Klein (1978), ‘Calculation of flat-plate collector utilizability’, Solar Energy, 21, 393.

    Article  Google Scholar 

  82. M. Collares-Pereira and A. Rabl (1979), ‘Simple procedure for predicting longterm average performance of non-concentrating and of concentrating solar collectors’, Solar Energy, 23, 235.

    Article  Google Scholar 

  83. S.A. Klein and W.A. Beckman (1979), ‘A generalized design method for closed-loop solar energy systems’, Solar Energy, 22, 269.

    Article  Google Scholar 

  84. J.E. Braun, S.A. Klein and K.A. Pearson (1983), ‘An improved design method for solar water heating systems,’ Solar Energy, 31(6), 597–604.

    Article  Google Scholar 

  85. C.F. Kutscher (1983), ‘The development of SOLIPH-A detailed computer model of solar industrial process heat systems’, Proc. Sixth Annual ASME Solar Energy Division Conf., ASME, April 19–21, 1983.

    Google Scholar 

  86. R. Gee (1983), ‘A simple energy calculation method for solar industrial process heat steam systems’, SERI/TP-253–1871, Jan. 1983, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  87. H.P. Garg (1985), ‘An overview of design methods for solar water heating system’, Solar and Wind Technology, 2(2), 101–112.

    Article  Google Scholar 

  88. ASHRAE Standard 93–77, ‘Methods of testing to determine the thermal performance of solar collectors’ American Society of Heating, Refrigeration and Air-conditioning Engineers, New York.

    Google Scholar 

  89. W.M. Kays and A.L. London (1964), ‘Compact heat exchangers’, IInd Edition, McGraw Hill Book Co., Inc. New York.

    Google Scholar 

  90. V.L. Morris (1982), ‘Solar collector materials exposure to the IPH site environment’, SAND 81-7028, Jan. 1982, McDonnell-Doughlas Astronautics Co., Huntington Beach, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Garg, H.P. (1987). Solar Energy for Industrial Process Heat. In: Advances in Solar Energy Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3795-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3795-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8188-7

  • Online ISBN: 978-94-009-3795-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics