Skip to main content

Kinetic Energy Dependence of Ion-Molecule Reactions: From Triatomics to Transition Metals

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 193))

Abstract

The kinetic energy dependence of a variety of ion-molecule reactions are examined using guided ion beam mass spectrometry. This experimental technique is shown to provide unprecedented detail in reaction excitation functions over an extremely wide kinetic energy range. Fundamental triatomic systems (A+ + H2, HD, D2 where A = 0, N, C, Si, Ne, Ar, Kr, and Xe) are examined with an eye on understanding the details of variations in the reaction excitation functions. These include the effects of thermochemistry, electronic degeneracy, adiabatic versus diabatic potential energy surfaces, and spin-orbit coupling. This insight is then applied to the reactions of hydrogen with atomic transition metal ions in specific electronic states. Several diabatic “rules” of reactivity become evident from these studies. These rules are further examined in more complex systems, the reactions of atomic metal ions with alkanes. Finally, studies of metal dimer and cluster ions are discussed with an emphasis on the effects of internal excitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 83, 166 (1985).

    Article  CAS  Google Scholar 

  2. N. R. Daly, Rev. Sci. Instrum. 31, 264 (1959).

    Article  Google Scholar 

  3. E. Teloy and D. Gerlich, Chem. Phys. 4, 417 (1974); D. Gerlich, Diplomarbeit, University of Freiburg, Federal Republic of Germany, 1971.

    Google Scholar 

  4. P. J. Chantry, J. Chem. Phys. 55, 2746 (1971).

    Article  CAS  Google Scholar 

  5. C. Lifshitz, R. L. C. Wu, T. 0. Tiernan, and D. T. Terwilliger, J. Chem. Phys. 68, 247 (1978).

    CAS  Google Scholar 

  6. H. Udseth, C. F. Giese, and W. R. Gentry, Phys. Rev. A 8, 2483 (1973).

    Article  CAS  Google Scholar 

  7. J. L. Elkind and P. B. Armentrout, J. Phys. Chem. 89, 5626 (1985).

    Article  CAS  Google Scholar 

  8. G. Gioumousis and D. P. Stevenson, J. Chem. Phys. 29, 294 (1958).

    Article  CAS  Google Scholar 

  9. M. Henchman, “Ion-Molecule Reactions,” Vol. 1, Ed. J. L. Franklin, (Plenum, New York, 1972), pg. 101.

    Google Scholar 

  10. B. H. Mahan, J. Chem. Ed. 52, 299 (1975).

    Google Scholar 

  11. R. D. Levine and R. B. Bernstein, J. Chem. Phys. 56, 281 (1972).

    Google Scholar 

  12. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 80, 2978 (1984).

    Article  CAS  Google Scholar 

  13. J. C. Light, J. Chem. Phys. 40, 3221 (1964); P. Pechukas and J. C. Light, Ibid. 42, 3281 (1965);

    Google Scholar 

  14. E. E. Nikitin, Teor. Eksp. Khim. 1, 135, 144, 248 (1965); [Theor. Exp. Chem. (Eng. Trans.) 1, 83, 90, 275 (1975)].

    Google Scholar 

  15. D. R. Bates, Proc. R. Soc. London A 360, 1 (1978).

    Article  CAS  Google Scholar 

  16. M. E. Weber, J. L. Elkind, and P. B. Armentrout, J. Chem. Phys. 84, 1521 (1986).

    Article  CAS  Google Scholar 

  17. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 84, 6750 (1986).

    Article  CAS  Google Scholar 

  18. J. L. Elkind and P. B. Armentrout, J. Chem. Phys. 84, 4862 (1986).

    Article  CAS  Google Scholar 

  19. J. L. Elkind and P. B. Armentrout, J. Chem. Phys. 84, 4862 (1986).

    Article  CAS  Google Scholar 

  20. N. Aristov and P. B. Armentrout, J. Am. Chem. Soc. 108, 1806 (1986).

    Article  CAS  Google Scholar 

  21. V. L. Talrose, P. S. Vinogradov, and I. K. Larin, “Gas Phase Ion Chemistry,” Vol. 1, Ed. M. Bowers (Academic, New York, 1979), pg. 305.

    Google Scholar 

  22. L. Sunderlin, N. Aristov, and P. B. Armentrout, J. Am. Chem. Soc., submitted for publication.

    Google Scholar 

  23. A. Henglein and K. Lacmann, Adv. Mass Spectrom. 3, 331 (1966);

    Google Scholar 

  24. A. Henglein, “Ion-Molecule Reactions in the Gas Phase,” Ed. P. J. Ausloos (American Chemical Society, Washington, D. C., 1966), pg. 63;

    Google Scholar 

  25. A. Ding, K. Lacmann, and A. Henglein, Ber. Bunsenges. Phys. Chem. 71, 596 (1967).

    CAS  Google Scholar 

  26. B. H. Mahan, J. Chem. Phys. 55, 1436 (1971); Accts. Chem. Res. 8, 55 (1975).

    Google Scholar 

  27. E. E. Ferguson, F. C. Fehsenfeld, and D. L. Albritton, “Gas Phase Ion Chemistry,” Ed. M. Bowers, (Academic, New York, 1979), pg. 45.

    Google Scholar 

  28. J. D. Burley, K. M. Ervin, and P. B. Armentrout, J. Chem. Phys. submitted for publication.

    Google Scholar 

  29. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11, Supp. 2, (1982).

    Google Scholar 

  30. J. 0. Hirshfelder, C. R. Curtiss, and R. B. Bird, “Molecular Theory of Gases and Liquids,” (Wiley, New York, 1954), pg. 947.

    Google Scholar 

  31. K. T. Gillen, B. H. Mahan, and J. S. Winn, Chem. Phys. Lett. 22, 344 (1973);

    Google Scholar 

  32. J. Chem. Phys. 58, 5373 (1973); Ibid. 59, 6380 (1973).

    Google Scholar 

  33. D. M. Hirst, J. Phys. B 17, L505 (1984).

    Article  CAS  Google Scholar 

  34. K. P. Huber and G. Herzberg, “Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules,” (Van Nostrand, Princeton, 1979 ).

    Google Scholar 

  35. M. A. Gittins and D. M. Hirst, Chem. Phys. Lett. 35, 534 (1975);

    Google Scholar 

  36. C. F. Bender, J. H. Meadows, and H. F. Schaefer, Faraday Discuss. Chem. Soc. 62, 59 (1977).

    Article  CAS  Google Scholar 

  37. J. A. Luine and G. H. Dunn, Ap. J. 299, 167 (1985).

    Article  Google Scholar 

  38. J. B. Marquette, B. R. Rowe, G. Dupeyrat, and E. Roueff, Astron. Astrophys. 147, 115 (1985).

    CAS  Google Scholar 

  39. N. G. Adams and D. Smith, Chem. Phys. Lett. 117, 67 (1985).

    Article  CAS  Google Scholar 

  40. C. E. Moore, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 1, No. 35 (1970).

    Google Scholar 

  41. K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 84, 6738 (1986).

    Article  CAS  Google Scholar 

  42. D. G. Truhlar, J. Chem. Phys. 51, 4617 (1969).

    Article  CAS  Google Scholar 

  43. J. L. Elkind and P. B. Armentrout, J. Phys. Chem. 88, 5454 (1984).

    Article  CAS  Google Scholar 

  44. The heat of formation of Si+ is 294.63 + 1 kcal/mol [JANAF Tables, see M. W. Chase, J. L. Curnutt, J. R. Downey, R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, J. Phys. Chem. Ref. Data, 11, 695 (1982)] and that for SiH2 + is 276 + 1 kcal/mol [A. Ding, R. A. Cassidy, L. S. Cordis, and F. W. Lampe, J. Chem. Phys. 83, 3426 (1985);

    Google Scholar 

  45. B.-H. Boo and P. B. Armentrout, J. Phys. Chem., submitted for publication].

    Google Scholar 

  46. From spectroscopic data given in ref 38.

    Google Scholar 

  47. J. L. Elkind and P. B. Armentrout, work in progress.

    Google Scholar 

  48. Thermochemical data for RgH+ is taken from S. G. Lias, J. F. Liebman, and R. D. Levin, J. Phys. Chem. Ref. Data, 13, 695 (1984). Supplementary data is from ref 26.

    Google Scholar 

  49. E. G. Jones, R. L. C. Wu, B. M. Hughes, T. 0. Tiernan, and D. G. Hopper, J. Chem. Phys. 73, 5631 (1980).

    CAS  Google Scholar 

  50. H. von Kock and L. Friedman, J. Chem. Phys. 38, 1115 (1963).

    Article  Google Scholar 

  51. W. A. Chupka and M. E. Russell, J. Chem. Phys. 49, 5426 (1968).

    Article  CAS  Google Scholar 

  52. P. R. Kemper and M. T. Bowers, Int. J. Mass Spectrom. Ion Phys. 52, 1 (1983);

    Google Scholar 

  53. I. Dotan and W. Lindinger, J. Chem. Phys. 76, 4972 (1982); W. Lindinger, E. Alge, H. Stori, M. Pahl, and R. N. Varney, Ibid. 67, 3495 (1977);

    Google Scholar 

  54. N. G. Adams, D. K. Bohme, D. B. Dunkin, and F. C. Fehsenfeld, Ibid. 52, 1951 (1970).

    CAS  Google Scholar 

  55. R. D. Smith, D. L. Smith, and J. H. Futrell, Chem. Phys. Lett. 32, 513 (1975); Int. J. Mass Spectrom. Ion Proc. 19, 395 (1976).

    Article  CAS  Google Scholar 

  56. K. Tanaka, J. Durup, T. Dato, and I. Koyano, J. Chem. Phys. 74, 5561 (1981).

    Article  CAS  Google Scholar 

  57. N. G. Adams, D. Smith, and E. Alge, J. Phys. B: Atom. Molec. Phys. 13, 3235 (1980).

    Article  CAS  Google Scholar 

  58. N. G. Adams, D. Smith, and E. Alge, J. Phys. B: Atom. Molec. Phys. 13, 3235 (1980).

    Article  CAS  Google Scholar 

  59. P. J. Kuntz and A. C. Roach, J. Chem. Soc. Faraday Trans. 2 68, 259 (1972).

    Google Scholar 

  60. P. F. Fennelly, J. D. Payzant, R. S. Hemsworth, and D. K. Bohnre, J. Chem. Phys. 60, 5115 (1974).

    Article  CAS  Google Scholar 

  61. H. Laue, J Chem. Phys. 46, 3034 (1967).

    Article  CAS  Google Scholar 

  62. P. B. Armentrout and J. L. Beauchamp, J. Am. Chem. Soc. 103, 784 (1981).

    Article  CAS  Google Scholar 

  63. S. A. Safron, G. D. Miller, F. A. Rideout and R. C. Horvat, J. Chem. Phys. 64, 5051 (1976);

    Google Scholar 

  64. G. D. Miller and S. A. Safron, Ibid. 64, 5065 (1976);

    Google Scholar 

  65. J. A. Rutherford and D. A. Vroom, Ibid. 65, 4445 (1976);

    Google Scholar 

  66. P. B. Armentrout, R. V. Hodges, and J. L. Beauchamp, Ibid. 66, 4683 (1977); J. Am. Chem. Soc. 99, 3162 (1977).

    Article  CAS  Google Scholar 

  67. G. D. Flesch and H. J. Svec, Inorg. Chem. 14, 1817 (1975).

    Article  CAS  Google Scholar 

  68. A. E. Stevens and J. L. Beauchamp, Chem. Phys. Lett. 78, 291 (1981).

    Article  CAS  Google Scholar 

  69. J. L. Elkind and P. B. Armentrout, J. Phys. Chem. submitted for publication. Armentrout and J. L. Beauchamp. Chem. Phys. 50, 37 (1980).

    Google Scholar 

  70. Elkind and P. B. Armentrout, J. Am. Chem. Soc 108, 2765

    Google Scholar 

  71. L. F. Halle, F. S. Klein, and J. L. Beauchamp, J. Am. Chem. Soc. 106, 2543 (1984).

    Article  CAS  Google Scholar 

  72. J. B. Schilling, W. A. Goddard, and J. L. Beauchamp, J. Am. Chem. Soc. 108, 582 (1986).

    Article  CAS  Google Scholar 

  73. J. L. Elkind and P. B. Armentrout, Inorg. Chem. 25, 1078 (1986).

    Article  CAS  Google Scholar 

  74. P. B. Armentrout, L. F Halle, and J. L. Beauchamp, J. Am. Chem. Soc. 103, 6501 (1981).

    Article  CAS  Google Scholar 

  75. M. L. Mandich, L. F. Halle, and J. L. Beauchamp, J. Am. Chem. Soc. 106, 4403 (1984).

    Article  CAS  Google Scholar 

  76. Ab initio calculations (ref 62) indicate that the MH+ species contain only 10% 4p character.

    Google Scholar 

  77. C. J. Ballhausen and H. B. Gray, “Molecular Orbital Theory,” ( Benjamin/Cummings, Reading, 1964 ).

    Google Scholar 

  78. J. L. Elkind and P. B. Armentrout, work in progress.

    Google Scholar 

  79. J. Allison, R. B. Freas, and D. P. Ridge, J. Am. Chem. Soc. 101, 1332 (1979).

    Article  CAS  Google Scholar 

  80. M. L. Steigerwald and W. A. Goddard, J. Am. Chem. Soc. 106, 308 (1984).

    Article  CAS  Google Scholar 

  81. N. Aristov, L. Sunderlin, R. Georgiadis, and P. B. Armentrout, work in progress.

    Google Scholar 

  82. Because of increased sensitivity, the results of from those reported in L. F. Halle, P. B. Armentrout, Beauchamp, J. Am. Chem. Soc. 103, 962 (1981).

    Article  Google Scholar 

  83. R. H. Schultz, J,L. Elkind, and P. B. Armentrout, J. Am. Chem. Soc., submitted for publicati on.

    Google Scholar 

  84. L. F. Halle, P. B. Armentrout, and J. L. Beauchamp, Organometallics 1, 963 (1982).

    Google Scholar 

  85. G. D. Byrd, R. C. Burnier, and B. S. Freiser, J. Am. Chem. Soc. 104, 3565 (1982);

    Google Scholar 

  86. D. B. Jacobson and B. S. Freiser, Ibid. 105, 5197 (1983).

    CAS  Google Scholar 

  87. R. Houriet, L. F. Halle, and J. L. Beauchamp, Organometallics 2, 1818 (1983).

    Article  CAS  Google Scholar 

  88. R. E. Winters and R. W. Kiser, J. Phys. Chem. 69, 1. 618 (1965).

    Google Scholar 

  89. K. Ervin, S. K. Loh, N. Aristov, and P. B. Armentrout, J. Phys. Chem. 87, 3593 (1983).

    Article  CAS  Google Scholar 

  90. M. F. Jarrold, A. J. Illies, and M. T. Bowers, J. Am. Chem. Soc. 107, 7339 (1985).

    Article  CAS  Google Scholar 

  91. D. B. Jacobson and B. S. Freiser, J. Am. Chem. Soc. 106, 4623 (1984).

    Article  CAS  Google Scholar 

  92. R. B. Freas and D. P. Ridge, J. Am. Chem. Soc. 102, 7129 (1980);

    Google Scholar 

  93. D. P. Ridge, “Ion Cyclotron Resonance Spectrometry,” Ed. H. Hartman and K. P. Wanczek, ( Springer-Verlag, New York, 1982 ).

    Google Scholar 

  94. P. B. Armentrout, S. K. Loh, and K. M. Ervin, J. Am. Chem. Soc. 106, 1161 (1984).

    Article  CAS  Google Scholar 

  95. P. B. Armentrout, L. F. Halle, and J. L. Beauchamp, J. Chem. Phys. 76, 2449 (1982).

    Article  CAS  Google Scholar 

  96. D. B. Jacobson and B. S. Freiser, J. Am. Chem. Soc. 108, 27 (1986).

    Article  CAS  Google Scholar 

  97. K. G. Leopold, T. M. Miller, and W. C. Lineberger, J. Am. Chem. Soc. 108, 178 (1986).

    Article  CAS  Google Scholar 

  98. V. Vaida, N. J. Cooper, R. J. Hemley, and D. G. Leopold, J. Am. Chem. Soc. 103, 7022 (1981);

    Google Scholar 

  99. D. G. Leopold and V. Vaida, Ibid. 105, 6809 (1983).

    CAS  Google Scholar 

  100. D. B. Jacobson and B. S. Freiser, J. Am. Chem. Soc. 106, 4623, 5351 (1984); 107, 1581 (1985);

    Google Scholar 

  101. R. L. Rettich and B. S. Freiser, Ibid. 107, 6222 (1985).

    Google Scholar 

  102. G. Delacretaz, P. Fayet, and L. Woste, Ber. Bunsenges. Phys. Chem. 88, 284 (1984);

    Google Scholar 

  103. P. Fayet and L. Woste, Surf. Sci. 156, 134 (1985).

    Article  CAS  Google Scholar 

  104. L. Hanley and S. L. Anderson, Chem. Phys. Lett. 122, 410 (1985); Proc. SPIE 669 (1986).

    Google Scholar 

  105. R. B. Freas and J. E. Campana, J. Am. Chem. Soc. 107, 6202 (1985).

    Article  CAS  Google Scholar 

  106. R. B. Freas and J. E. Campana, J. Am. Chem. Soc. 107, 6202 (1985).

    Article  CAS  Google Scholar 

  107. L. S. Zheng, P. J. Brucat, C. L. Pettiette, S. Yang, and R. E. Smalley, J. Chem. Phys. 83, 4273 (1985);

    Google Scholar 

  108. P. J. Brucat, L. S. Zheng, C. L. Pettiette, S. Yang, and R. E. Smalley, Ibid. 84, 3078 (1986).

    CAS  Google Scholar 

  109. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, J. Chem. Phys. 74, 6511 (1981).

    Article  CAS  Google Scholar 

  110. R. Campargue, J. Phys. Chem. 88, 4466 (1984); J. P. Toennies and K. Winkelmann, J. Chem. Phys. 66, 3965 (1977).

    Article  Google Scholar 

  111. R. L. Whetten, D. M. Cox, D. J. Trevor, and A. Kaldor, J. Phys. Chem. 89, 566 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Armentrout, P.B. (1987). Kinetic Energy Dependence of Ion-Molecule Reactions: From Triatomics to Transition Metals. In: Ausloos, P., Lias, S.G. (eds) Structure/Reactivity and Thermochemistry of Ions. NATO ASI Series, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3787-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3787-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8185-6

  • Online ISBN: 978-94-009-3787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics